Skip to main content
Log in

Linear Transformation of Electromagnetic Waves in Large-Scale Axially Symmetric Trap

  • OSCILLATIONS AND WAVES IN PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The results are presented from studies of the efficiency of the quasi-optical wave beam tunneling through the opacity region in the vicinity of the plasma cutoff surface in the inhomogeneous magnetoactive plasma in the geometry corresponding to a large-scale axially symmetric open trap. In this geometry, the distinctive features are considered of the linear transformation of normal waves in two cases: the transformation of the left-handed polarized wave, which is typical of the toroidal traps, and the transformation of the right-handed polarized waves, which is possible when the plasma density gradient is not orthogonal to the magnetic field. Different effects limiting the achievable transformation efficiency are studied, and the possible approaches to the transformation efficiency optimization are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. A. Ivanov and V. V. Prikhod’ko, Phys.–Usp. 60, 509 (2017). https://doi.org/10.3367/UFNe.2016.09.037967

    Article  Google Scholar 

  2. P. A. Bagryansky, A. G. Shalashov, E. D. Gospodchikov, A. A. Lizunov, V. V. Maximov, V. V. Prikhodko, E. I. Soldatkina, A. L. Solomakhin, and D. V. Yakovlev, Phys. Rev. Lett. 114, 205001 (2015). https://doi.org/10.1103/PhysRevLett.114.205001

  3. P. A. Bagryansky, A. V. Anikeev, G. G. Denisov, E. D. Gospodchikov, A. A. Ivanov, A. A. Lizunov, Yu. V. Kovalenko, V. I. Malygin, V. V. Maximov, O. A. Korobeinikova, S. V. Murakhtin, E. I. Pinzhenin, V. V. Prikhodko, V. Ya. Savkin, A. G. Shalashov, et al., Nucl. Fusion 55, 053009 (2015). https://doi.org/10.1088/0029-5515/55/5/053009

  4. H. P. Laqua, Plasma Phys. Control. Fusion 49, R1 (2007). https://doi.org/10.1088/0741-3335/49/4/R01

    Article  ADS  Google Scholar 

  5. V. E. Golant and A. D. Piliya, Sov. Phys.–Usp. 14, 413 (1972).

    Article  ADS  Google Scholar 

  6. J. Preinhaelter and V. Kopecký, J. Plasma Phys. 10, 1 (1973). https://doi.org/10.1017/S0022377800007649

    Article  ADS  Google Scholar 

  7. T. Maekawa, S. Tanaka, Y. Terumichi, and Y. Hamada, Phys. Rev. Lett. 40, 1379 (1978). https://doi.org/10.1103/PhysRevLett.40.1379

    Article  ADS  Google Scholar 

  8. H. P. Laqua, H. Maassberg, N. B. Marushchenko, F. Volpe, A. Weller, W. Kasparek, and ECRH-Group, Phys. Rev. Lett. 90, 075003 (2003). https://doi.org/10.1103/PhysRevLett.90.075003

  9. V. Shevchenko, G. Cunningham, A. Gurchenko, E. Gusakov, B. Lloyd, M. O’Brien, A. Saveliev, A. Surkov, F. Volpe, and M. Walsh, Fusion Sci. Technol. 52, 202 (2007). https://doi.org/10.13182/FST07-A1499

    Article  Google Scholar 

  10. A. Pochelon, A. Mueck, L. Curchod, Y. Camenen, S. Coda, B. P. Duval, T. P. Goodman, I. Klimanov, H. P. Laqua, Y. Martin, J.-M. Moret, L. Porte, A. Sushkov, V. S. Udintsev, F. Volpe, et al., Nucl. Fusion 47, 1552 (2007). https://doi.org/10.1088/0029-5515/47/11/017

    Article  ADS  Google Scholar 

  11. J. Preinhaelter, Czech. J. Phys. B 25, 39 (1975). https://doi.org/10.1007/BF01589670

    Article  ADS  Google Scholar 

  12. E. Mjølhus, J. Plasma Phys. 31, 7 (1984).

    Article  ADS  Google Scholar 

  13. M. D. Tokman, Plasma Phys. Rep. 11, 689 (1985).

    Google Scholar 

  14. F. R. Hansen, J. P. Lynov, C. Maroli, and V. Petrillo, J. Plasma Phys. 39, 319 (1988). https://doi.org/10.1017/S0022377800013064

    Article  ADS  Google Scholar 

  15. A. V. Timofeev, Plasma Phys. Rep. 26, 820 (2000).

    Article  ADS  Google Scholar 

  16. A. V. Timofeev, Phys.-Usp. 47, 555 (2004). https://doi.org/10.1070/PU2004v047n06ABEH001714

    Article  Google Scholar 

  17. R. A. Cairns and C. N. Lashmore-Davies, Phys. Plasmas 7, 4126 (2000). https://doi.org/10.1063/1.1290051

    Article  ADS  Google Scholar 

  18. M. A. Balakina, A. G. Shalashov, E. D. Gospodchikov, and O. B. Smolyakova, Radiophys. Quantum Electron. 49, 617 (2006). https://doi.org/10.1007/s11141-006-0096-z

    Article  ADS  Google Scholar 

  19. A. G. Shalashov and E. D. Gospodchikov, Plasma Phys. Control. Fusion 52, 025007 (2010). https://doi.org/10.1088/0741-3335/52/2/025007

  20. H. Weitzner, Phys. Plasmas 11, 866 (2004). https://doi.org/10.1063/1.1642655

    Article  ADS  Google Scholar 

  21. E. D. Gospodchikov, A. G. Shalashov, and E. V. Suvorov, Plasma Phys. Control. Fusion 48, 869 (2006). https://doi.org/10.1088/0741-3335/48/6/011

    Article  ADS  Google Scholar 

  22. A. G. Shalashov, E. D. Gospodchikov, and E. V. Suvorov, J. Exp. Theor. Phys. 103, 480 (2006).

    Article  ADS  Google Scholar 

  23. A. Yu. Popov and A. D. Piliya, Plasma Phys. Rep. 33, 109 (2007).

    Article  ADS  Google Scholar 

  24. E. D. Gospodchikov, A. G. Shalashov, and E. V. Suvorov, Fusion Sci. Technol. 53, 261 (2008). https://doi.org/10.13182/FST08-A1671

    Article  Google Scholar 

  25. A. Yu. Popov, Plasma Phys. Control. Fusion 49, 1599 (2007). https://doi.org/10.1088/0741-3335/49/10/001

    Article  ADS  Google Scholar 

  26. A. G. Shalashov and E. D. Gospodchikov, Plasma Phys. Control. Fusion 50, 045005 (2008). https://doi.org/10.1088/0741-3335/50/4/045005

  27. A. Yu. Popov, Plasma Phys. Control. Fusion 52, 035008 (2010). https://doi.org/10.1088/0741-3335/52/3/035008

  28. A. G. Shalashov and E. D. Gospodchikov, Plasma Phys. Control. Fusion 52, 115001 (2010). https://doi.org/10.1088/0741-3335/52/11/115001

  29. T. A. Khusainov, E. D. Gospodchikov, and A. G. Shalashov, Plasma Phys. Rep. 38, 83 (2012).

    Article  ADS  Google Scholar 

  30. E. D. Gospodchikov, T. A. Khusainov, and A. G. Shalashov, Plasma Phys. Control. Fusion 54, 045009 (2012). https://doi.org/10.1088/0741-3335/54/4/045009

  31. T. A. Khusainov, A. G. Shalashov, and E. D. Gospodchikov, Plasma Phys. Rep. 44, 484 (2018). https://doi.org/10.1134/S1063780X18050070

    Article  ADS  Google Scholar 

  32. V. P. Pastukhov, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Consultants Bureau, New York, 1987), Vol. 13, p. 203.

    Google Scholar 

  33. A. G. Shalashov, and E. D. Gospodchikov, Phys.–Usp. 55, 147 (2012). https://doi.org/10.3367/UFNe.0182.201202d.0157

    Article  Google Scholar 

  34. A. V. Timofeev, Plasma Phys. Rep. 26, 820 (2000).

    Article  ADS  Google Scholar 

  35. H. Bateman and A. Erdélyi, Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdélyi (McGraw-Hill, New York, 1953), Vol. 2.

    Google Scholar 

  36. K. G. Budden, Radio Waves in the Ionosphere (Cambridge Univ. Press, Cambridge, 1966).

    Google Scholar 

  37. A. D. Piliya and V. I. Federov, in High-Frequency Plasma Heating, Ed. by A. G. Litvak (IPF AN SSSR, Gorki, 1983; AIP, New York, 1992).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-42-520069r_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Khusainov.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusainov, T.A., Gospodchikov, E.D. Linear Transformation of Electromagnetic Waves in Large-Scale Axially Symmetric Trap. Plasma Phys. Rep. 46, 992–1003 (2020). https://doi.org/10.1134/S1063780X20100062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20100062

Keywords:

Navigation