Skip to main content
Log in

Planar and Nonplanar Electron-Acoustic Solitary Waves in the Presence of Positrons

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The propagation of planar and nonplanar electron-acoustic waves composed of stationary ions, cold electrons, superthermal hot electrons, and positrons is studied by using Korteweg–de Vries (KdV) equation in the planar and nonplanar coordinates. The analytical and numerical solutions of KdV equation reveal that the nonplanar electron-acoustic solitons are modified significantly with positron concentration and behave differently in different geometries. It is found that the positron concentration β and positron temperature σ have a negative effect on the wave potential and width of the wave, there is a decrease in the amplitude as well as width of the wave. Thus, it is noticed that the strength of the wave decreases with the growing values of β and σ. From the examination, it is discovered that this increase in height and steepness is more articulated in the spherical geometry than in the cylindrical one. The strength of the wave grows with increment of superthermal particles (low value of κ). There is also an increase in the width of the solitary wave with decreasing the value of κ, which is in agreement with the results of [1]. Further, it is noticed that the spherical wave moves faster than cylindrical waves. This difference arises due to the presence of the geometry term \(m{\text{/}}2\tau \), whose value becomes zero in the planar case (\(m = 0\)), \(1{\text{/}}(2\tau )\) in the cylindrical and \(2{\text{/}}2\tau \) in the spherical case. Results of our work may be helpful in analyses of the physical behaviour of solitary waves features in different astrophysical and space environments like the supernovas, polar regions and in the vicinity of black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Danekhar, Phys. Plasmas 24, 102905 (2017).

  2. F. Verheest, M. A. Hellberg, G. J. Gray, and R. L. Mace, Astrophys. Space Sci. 239, 125 (1995).

    Article  ADS  Google Scholar 

  3. Y. N. Nejoh, Phys. Plasmas 3, 1447 (1996).

    Article  ADS  Google Scholar 

  4. I. Kourakis, F. Verheest, and N. Cramer, Phys. Plasmas 14, 022306 (2007).

  5. W. Masood, N. Imtiaz, and M. Siddiq, Phys. Scr. 80, 015501 (2009).

  6. M. Tribeche, Phys. Plasmas 17, 042110 (2010).

  7. M. S. Alam, M. J. Uddin, M. M. Masud, and A. A. Mamun, Chaos 24, 033130 (2014).

  8. S. Seberian, A. Esfandyari-Kalijahi, and M. Afsari-Ghazi, Plasma Phys. Rep. 43, 83 (2017).

    Article  ADS  Google Scholar 

  9. A. Paul, A. Bandyopadhyay, and K. P. Das, Plasma Phys. Rep. 45, 466 (2019).

    Article  ADS  Google Scholar 

  10. S. Bansal, M. Aggarwal, and T. S. Gill, Contrib. Plasma Phys. 59, e201900047 (2019). https://doi.org/10.1002/ctpp.201900047

  11. Active Galactic Nuclei, Ed. by H. R. Miller and P. J. Witta (Springer-Verlag, Berlin, 1987), p. 202.

    Google Scholar 

  12. F. C. Michel, Theory of Neutron Star Magnetosphere (Chicago University Press, Chicago, 1991).

    Google Scholar 

  13. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

    Article  ADS  Google Scholar 

  14. S. Mahmood and H. Saleem, Phys. Plasmas 9, 724 (2002).

    Article  ADS  Google Scholar 

  15. Q. Haque, H. Saleem, and J. Vranjes, Phys. Plasmas 9, 474 (2002).

    Article  ADS  Google Scholar 

  16. A. Mushtaq and H. A. Shah, Phys. Plasmas 12, 012301 (2005).

  17. M. Tribeche, K. Aoutou, S. Younsi, and R. Amour, Phys. Plasmas 16, 072103 (2009).

  18. N. A. El-Bedwehy and W. M. Moslem, Astrophys. Space Sci. 335, 435 (2011).

    Article  ADS  Google Scholar 

  19. E. F. El-Shamy, W. F. El-Taibany, E. K. El-Shewy, and K. H. El-Shorbagy, Astrophys. Space Sci. 338, 279 (2012).

    Article  ADS  Google Scholar 

  20. S. K. Jain and M. K. Mishra, J. Plasma Phys. 79, 661 (2013).

    Article  ADS  Google Scholar 

  21. M. M. Rahman, M. S. Alam, and A. A. Mamun, Eur. Phys. J. Plus 129, 84 (2014).

    Article  Google Scholar 

  22. M. J. Uddin, M. S. Alam, and A. A. Mamun, Phys. Plasmas 22, 022111 (2015).

  23. S. Bansal, M. Aggarwal, and T. S. Gill, Contrib. Plasma Phys. 59, e201900047 (2019). https://doi.org/10.1002/ctpp.201900019

  24. S. A. Khan, S. Mahmood, and S. Ali, Phys. Plasmas 16, 044505 (2009).

  25. W. Masood and H. Rizvi, Phys. Plasmas 16, 092302 (2009).

  26. W. M. Moslem, R. Sabry, and P. K. Shukla, Phys. Plasmas 17, 032305 (2010).

  27. T. S. Gill, A. S. Bains, N. S. Saini, and C. Bedi, Phys. Lett. A 374, 3210 (2010).

    Article  ADS  Google Scholar 

  28. K. Jilani, A. M. Mirza, and T. A. Khan, Astrophys. Space Sci. 349, 255 (2014).

    Article  ADS  Google Scholar 

  29. R. A. Cairns, A. A. Mamun, R. Bingham, R. Bostrom, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709 (1985).

    Article  ADS  Google Scholar 

  30. T. S. Gill, P. Bala, and A. S. Bains, Astrophys. Space Sci. 357, 63 (2015).

    Article  ADS  Google Scholar 

  31. A. Rafat, M. M. Rahman, M. S. Alam, and A. A. Mamun, Plasma Phys. Rep. 42, 792 (2016).

    Article  ADS  Google Scholar 

  32. L. Muschietti, R. E. Ergun, I. Roth, and C. W. Carlson, Geophys. Res. Lett. 26, 1093 (1999).

    Article  ADS  Google Scholar 

  33. C. Cattell, J. Crumley, J. Dombeck, J. R. Wygant, and F. S. Mozer, Geophys. Res. Lett. 29, 1065 (2002).

    Article  ADS  Google Scholar 

  34. P. A. Sturrock, Astrophys. J. 164, 529 (1971).

    Article  ADS  Google Scholar 

  35. M. A. Ruderman and P. G. Sutherland, Astrophys. J. 196, 51 (1975).

    Article  ADS  Google Scholar 

  36. T. K. Baluku and M. A. Helberg, Phys. Plasmas 15, 123705 (2008).

  37. C. Bedi and B. S. Chahal, Astrophys. Space Sci. 344, 161 (2013).

    Article  ADS  Google Scholar 

  38. F. Verheest and M. A. Hellberg, Phys. Plasmas 21, 022307 (2014).

  39. S. Bansal, M. Aggarwal, and T. S. Gill, J. Astrophys. Astron. 39, 27 (2018).

    Article  ADS  Google Scholar 

  40. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971).

    Article  ADS  Google Scholar 

  41. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolutionary Equations, and Inverse Scattering (Cambridge Univ. Press, Cambridge, 1991).

    Book  Google Scholar 

  42. W. Malfliet, Am. J. Phys. 60, 650 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, S., Aggarwal, M. & Gill, T.S. Planar and Nonplanar Electron-Acoustic Solitary Waves in the Presence of Positrons. Plasma Phys. Rep. 46, 715–723 (2020). https://doi.org/10.1134/S1063780X20070028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20070028

Keywords:

Navigation