Abstract—
A self-consistent fluid simulation of inductively coupled plasma-enhanced chemical vapour deposition (ICP-CVD) using silane, argon, and hydrogen mixture is presented. The model solves the continuity equations for charged species, the drift-diffusion equations to describe their transport and the electron energy balance equation, coupled with Maxwell’s and Poisson’s equations, using COMSOL Multiphysics software. In order to obtain a better comprehending of the discharge parameters, a discharge in a Gaseous Electronics Conference cell (GEC) reactor is simulated. In this study, the GEC reactor with five-turn inductive coils is driven at a radio frequency of 13.56 MHz in order to sustain the plasma discharge at low temperature for a mixture of SiH4/Ar/H2, with an intial gas pressure fixed at 20 mTorr. The simulations yield the profile of plasma components such as electron density and temperature as well as the electrical potential in the centre of the discharge during silicon films deposition. The effects of external settings, such as chamber pressure, applied power and hydrogen dilution, on the growth rate of the silicon films deposited by ICP-CVD are then investigated. It is shown that the increase of the applied power from 1000 to 3000 W and the gas pressure from 10 to 40 mTorr results in a moderate increase in the deposition rate of the silicon films, whereas the increase in the dilution of the hydrogen in the mixture produces its decrease.
This is a preview of subscription content, access via your institution.






REFERENCES
J. K. Saha, H. Jia, N. Ohse, and H. Shirai, Thin Solid Films 515, 4098 (2007).
N. A. Bakr., A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, V. G. Sathe, S. W. Gosavi, and S. R. Jadkar, Thin Solid Films 519, 3501 (2011).
S. K. Kim, S. I. Cho, Y. J. Choi, K. S. Cho, S. M. Pietruszko, and J. Jang, Thin Solid Films 337, 200 (1999).
D. Y. Wei, S. Q. Xia, S. Y. Huang, C. S. Chan, H. P. Zhou, L. X. Xu, Y. N. Guo, J. W. Chai, S. J. Wangand, and S. Xu, J. Phys. D: Appl. Phys. 46, 215501 (2013).
R. Amrani, F. Pichot, L. Chahed, and Y. Cuminal, Cryst. Struct. Theory Appl. 1, 57 (2012).
S. Juneja, S. Sudhakar, J. Gope, and S. Kumar, Mater. Sci. Semicond. Process. 40, 11 (2015).
K. Kandoussi, C. Simon, N. Coulon, K. Belarbiand, and T. Mohammed-Brahim, J. Non-Cryst. Solids 354, 2513 (2008).
S. K. Kim, Y. J. Choi, K. S. Cho, and J. Jang, IEEE Trans. Electron Devices 46, 1001 (1999).
M. Li, H.-M. Wu, and Y. Chen, IEEE Trans. Plasma Sci. 23, 558 (1995).
H. P. Zhou, D. Y. Wei, S. Xu, S. Q. Xiao, L. X. Xu, S. Y. Huang, Y. N. Guo, W. S. Yan, and M. Xu, J. Appl. Phys. 110, 023517 (2011).
D. Raha and D. Das, Appl. Surf. Sci. 276, 249 (2013).
S. H. Lee, I. Lee, and J. Yi, Surf. Coat. Technol. 153, 67 (2002).
C. Jia, J. Linhong, W. Kesheng, H. Chuankun, and S. Yixiang, J. Semicond. 34, 066004 (2013).
C. S. Oh, T. H. Kim, K. Y. Lim, and J. W. Yang, Semicond. Sci. Technol. 19, 172 (2004).
M. Mao, Y. N. Wang, and A. Bogaerts, J. Phys. D: Appl. Phys. 44, 435202 (2011).
J. H. Choi, L. Latu-Romain, E. Bano, F. Dhalluin, T. Chevolleau, and T. Baron, J. Phys. D: Appl. Phys. 45, 235204 (2012).
E. R. Keiterand and M. J. Kushner, IEEE Trans. Plasma Sci. 27, 62 (1999).
Q. Cheng, S. Xu, J. W. Chai, S. Y. Huang, Y. P. Ren, J. D. Long, P. P. Rutkevych, and K. Ostrikov, Thin Solid Films 516, 5991 (2008).
L. da Silva Zambom, R. D. Mansano, and R. Furlan, Vacuum 65, 213 (2002).
J. Justine, T. Bartel, G. A. Hebner, and J. Woodwort, J. Electrochem. Soc. 144, 2448 (1997).
A. O. Brezmes and C. Breitkopf, Vacuum 116, 65 (2015).
B. Ramamurthi and D. J. Economou, Plasma Sources Sci. Technol. 11, 324 (2002).
Y. Wang, R. J. Van Brunt, and J. K. Olthoff, J. Appl. Phys. 83, 703 (1998).
D. P. Lymberopoulos and D. J. Economou, J. Res. Natl. Inst. Stand. Technol. 100, 473 (1995).
M. Chakraborty, A. Banerjee, and D. Das, Phys. E: Low-Dimens. Syst. Nanostruct. 61, 95 (2014).
C. Li, J. H. Hsieh, K. L. Huang, Y. T. Shao, and Y. W. Chen, Thin Solid Films 544, 37 (2013).
J. H. Hsieh, H. C. Liang, Y. Setsuhara, and C. Li, Surf. Coat. Technol. 231, 550 (2013).
Comsol Multiphysics TM Software, Version 4.3a, COMSOL Inc., http://www.comsol.com.
M. Huang, P. Y. Yang, D. S. Hanselman, C. A. Monnig, and G. M. Hieftje, Spectrochim. Acta, Part B 45, 511 (1990).
H. Singh and D. B. Graves, J. Appl. Phys. 88, 3889 (2000).
H.-C. Lee, J.-Y. Bang, and C.-W. Chung, Thin Solid Films 519, 7009 (2011).
K. De Bleecker, A. Bogaerts, and R. Gijbels, Phys. Rev. E. 69, 056409 (2004).
Wang Xifeng, Song Yuanhong, Zhao Shuxia, Dai Zhongling, and Wang Younian, Plasma Sci. Technol. 18, 394 (2016).
D. Stephan, D. Bluhm, V. Bolsinger, W. Dobrygin, O. Schmidt, and R. P. Brinkmann, Plasma Sources Sci. Technol. 22, 055009 (2013).
Chen Jiuxiang, Wang Weizhong, Jyh Shiram Cherng, and Qiang Chen, Plasma Sci. Technol. 16, 502 (2014).
ACKNOWLEDGMENTS
We are grateful to Professor S. Sahli, Director of the LMI Laboratory. And we also express our thanks to our colleague, R. Abidat for her encouragement and help.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Siari, K., Rebiai, S., Bahouh, H. et al. Plasma-Enhanced Chemical Vapor Deposition of Silicon Films at Low Pressure in GEC Reference Cell. Plasma Phys. Rep. 46, 667–674 (2020). https://doi.org/10.1134/S1063780X20060094
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063780X20060094
Keywords:
- inductively coupled plasma
- GEC reference cell
- silicon films
- plasma-enhanced chemical vapor deposition
- high-density plasma
- deposition rate