Abstract
We studied the propagation of small-amplitude dust ion acoustic (DIA) solitary waves in four-component relativistic plasma comprised of nonthermal electrons, mobile positively charged ions, positron beam and negatively charged massive dust particles. By using the reductive perturbation method, the Korteweg–de-Vries (KdV) nonlinear wave equation is derived numerically. In this work, we have elucidated the role of energetic positron beam in the relativistic plasma and analyzed the existence region for ion-acoustic (IA) solitary wave formation. It is found that for certain plasma parameters, the propagation of both compressive and rarefactive solitary waves is possible. Here, the injecting streaming positron beam in plasma gives rise to the increase in the phase velocity (Mach number) and reaches up to the hypersonic regime of flow velocity. It is observed that the initial increase in relativistic factor of positron beam \({{\gamma }_{{{\text{br}}}}}\), as well as temperature ratio of the positron beam to electrons \({{\sigma }_{{\text{b}}}}\) decrease the characteristic features (the amplitude) of the compressive solitary wave potential profiles. On the other hand, on increasing dust grain charge \({{Z}_{{{\text{d0}}}}}\), positron beam concentration ratio \({{\mu }_{{\text{b}}}}\) as well as nonthermal electrons concentration result in enhancement of the amplitudes of IA solitary wave potential profiles. The findings of this work can be more helpful in understanding the Earth’s upper atmosphere (Aurora region of the ionosphere) as well as the space plasmas.
Similar content being viewed by others
REFERENCES
H. Alfvén, Cosmic Plasma (Reidel, Dordrecht, 1981).
I. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics, Vol. 2: The Structure and Evolution of the Universe (University of Chicago, Chicago, 1971).
P. Zuccon, B. Bertucci, B. Alpat, G. Ambrosi, R. Battiston,G. Battostoni, W. J. Burger, D. Caraffini, C. Cecchi, L. D. Masso, N. Dinu, G. Esposito, A. Ferrari, E. Fiandrini, M. Ionica, et al., Astropart. Phys. 20, 221 (2003).
M. H. Thoma, Eur. Phys. J. D 55, 271 (2009).
R. G. Greaves, M. D. Tinkle, and C. M. Surko, Phys. Plasmas 1, 1439 (1994).
T. Kotani, N. Kawai, M. Matsuoka, and W. Brinkmann, Publ. Astron. Soc. Jpn. 48, 619 (1996).
K. Roy, A. P. Misra, and P. Chatterjee, Phys. Plasmas 15, 032310 (2008).
A. Shah and R. Saeed, Phys. Lett. A 373, 4164 (2009).
T. S. Gill, A. Singh, H. Kaur, N. S. Saini, and P. Bala, Phys. Lett. A 361, 364 (2007).
M. K. Deka and A. N. Dev, Plasma Phys. Rep. 44, 1 (2018).
H. R. Pakzad and M. Tribeche, J. Fusion Energy 32, 171 (2013).
S. I. Popel, S. V. Vladimirov, and P. K. Shukla, Phys. Plasmas 2, 716 (1995).
G. Lu, Y. Liu, Y. Wang, L. Stenflo, S. I. Popel, and M. Y. Yu, J. Plasma Phys. 76, 267 (2010).
J. Srinivas, S. I. Popel, and P. K. Shukla, J. Plasma Phys. 55, 209 (1996).
H. R. Pakzad, Astrophys. Space Sci. 332, 269 (2011).
T. I. Rajib, S. Sultana, and A. A. Mamun, IEEE Trans. Plasma Sci. 45, 718(2017).
M. G. Shah, M. R. Hossen, and A. A. Mamun, J. Plasma Phys. 81, 905810517 (2015).
S. A. Shan and H. Saleem, Phys. Plasmas 16, 022111 (2009).
A. Barkan, N. D’Angelo, and R. L. Merlino, Planet. Space Sci. 44, 239 (1996).
P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).
D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 418 (1994).
A. Mamun and P. K.Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002).
T. V. Losseva, S. I. Popel, and A. P. Golub, Plasma Phys. Rep. 38, 729 (2012).
T. V. Losseva, S. I. Popel, A. P. Golub, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).
S. S. Duha, M. G. M. Anowar, and A. A. Mamun, Phys. Plasmas 17, 103711 (2010).
S. Ghosh, S. Sarkar, M. Khan, and M. R. Gupta, Phys. Plasmas 7, 3594 (2000).
S. H. Cho, H. J. Lee, and Y. S. Kim, Phys. Rev. E 61, 4357 (2000).
P. K. Shukla and M. Marklund, Phys. Scr. 2004 (T113), 36 (2004).
S. Ghosh and R. Bharuthram, Astrophys. Space Sci. 314, 121 (2008).
A. Paul, A. Das, and A. Bandyopadhyay, Plasma Phys. Rep. 43, 218 (2017).
S. A. El-Tantawy, N. A. El-Bedwehy, and W. M. Moslem, Phys. Plasmas 18, 052113 (2011).
N. S. Saini, B. S. Chahal, and A. S. Bains, Astrophys. Space Sci. 347, 129 (2013).
B. C. Kalita and S. Das, IEEE Trans. Plasma Sci. 46, 790 (2018).
M. K. Deka, N. C. Adhikary, A. P. Misra, H. Bailung, and Y. Nakamura, Phys. Plasmas 19, 103704 (2012).
N. C. Adhikary, A. P. Misra, H. Bailung, and J. Chutia, Phys. Plasmas 17, 044502 (2010).
S. A Shan, A. U. Rahman, and A. Mushtaq, Phys. Plasmas 24, 032104 (2017).
B. Shokri and S. M. Khorashadizadeh, Phys. Plasmas 11, 1689 (2004).
A. Gsponer, Report No. ISRI-82-04.56 (Independent Scientific Research Institute, Oxford, England, 2009). https://arxiv.org/pdf/physics/0409157.pdf.
R. Sarma, A. P. Misra, and N. C. Adhikary, Chin. Phys. B 27, 105207 (2018).
M. K. Deka and A. N. Dev, Ann. Phys. 395, 45 (2018).
R. A. Cairns, A. A. Mamum, R. Bingham, R. Bostrom, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709 (1995).
H. Kaur, T. S. Gill, and N. S. Saini, Chaos, Solitons Fractals 42, 1638 (2009).
H. R. Pakjad, Indian J. Phys. 83, 1605 (2009).
M. A. Hossen, M. M. Rahman, M. R. Hossen, and A. A. Mamun, Plasma Phys. Rep. 43, 464 (2017).
D. S. Hall, C. P. Chaloner, D. A. Bryant, D. R. Lepine, and V. P. Tritakis, J. Geophys. Res.: Space Phys. 96, 7869 (1991).
C. Grabbe, J. Geophys. Res.: Space Phys. 94, 17299 (1989).
S. A. Elwakil, M. A. Zahran, and E. K. El-Shewy, Phys. Scr. 75, 803 (2007).
F. Verheest and S. R. Pillay, Phys. Plasmas 15, 013703 (2008).
E. Saberian, A. E. Kalejahi, and M. A. Ghazi, Plasma Phys. Rep. 43, 83 (2017).
B. Choudhury, R. Goswami, G. C. Das, and M. P. Bora, Phys. Plasmas 20, 042902 (2013).
H. K. Malik and K. Singh, IEEE Trans. Plasma Sci. 33, 1995 (2005).
Y. Nejoh, J. Plasma Phys. 37, 487 (1987).
S. I. Popel, A. P. Golub, T. V. Losseva, A. V. Ivlev, S. A. Khrapak, and G. Morfill, Phys. Rev. E 67, 056402 (2003).
N. C. Adhikary, H. Bailung, A. R. Pal, J. Chutia, and Y. Nakamura, Phys. Plasmas 14, 103705, (2007).
Funding
B. Boro is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for the financial assistantship under CSIR Junior Research Fellowship (file no. 09/1221(0001)/2018-EMR-1).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Boro, B., Dev, A.N., Saikia, B.K. et al. Nonlinear Wave Interaction with Positron Beam in a Relativistic Plasma: Evaluation of Hypersonic Dust Ion Acoustic Waves. Plasma Phys. Rep. 46, 641–652 (2020). https://doi.org/10.1134/S1063780X20060021
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063780X20060021