Skip to main content
Log in

Nonlinear Wave Interaction with Positron Beam in a Relativistic Plasma: Evaluation of Hypersonic Dust Ion Acoustic Waves

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

We studied the propagation of small-amplitude dust ion acoustic (DIA) solitary waves in four-component relativistic plasma comprised of nonthermal electrons, mobile positively charged ions, positron beam and negatively charged massive dust particles. By using the reductive perturbation method, the Korteweg–de-Vries (KdV) nonlinear wave equation is derived numerically. In this work, we have elucidated the role of energetic positron beam in the relativistic plasma and analyzed the existence region for ion-acoustic (IA) solitary wave formation. It is found that for certain plasma parameters, the propagation of both compressive and rarefactive solitary waves is possible. Here, the injecting streaming positron beam in plasma gives rise to the increase in the phase velocity (Mach number) and reaches up to the hypersonic regime of flow velocity. It is observed that the initial increase in relativistic factor of positron beam \({{\gamma }_{{{\text{br}}}}}\), as well as temperature ratio of the positron beam to electrons \({{\sigma }_{{\text{b}}}}\) decrease the characteristic features (the amplitude) of the compressive solitary wave potential profiles. On the other hand, on increasing dust grain charge \({{Z}_{{{\text{d0}}}}}\), positron beam concentration ratio \({{\mu }_{{\text{b}}}}\) as well as nonthermal electrons concentration result in enhancement of the amplitudes of IA solitary wave potential profiles. The findings of this work can be more helpful in understanding the Earth’s upper atmosphere (Aurora region of the ionosphere) as well as the space plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Alfvén, Cosmic Plasma (Reidel, Dordrecht, 1981).

    Book  Google Scholar 

  2. I. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics, Vol. 2: The Structure and Evolution of the Universe (University of Chicago, Chicago, 1971).

  3. P. Zuccon, B. Bertucci, B. Alpat, G. Ambrosi, R. Battiston,G. Battostoni, W. J. Burger, D. Caraffini, C. Cecchi, L. D. Masso, N. Dinu, G. Esposito, A. Ferrari, E. Fiandrini, M. Ionica, et al., Astropart. Phys. 20, 221 (2003).

    Article  ADS  Google Scholar 

  4. M. H. Thoma, Eur. Phys. J. D 55, 271 (2009).

    Article  ADS  Google Scholar 

  5. R. G. Greaves, M. D. Tinkle, and C. M. Surko, Phys. Plasmas 1, 1439 (1994).

    Article  ADS  Google Scholar 

  6. T. Kotani, N. Kawai, M. Matsuoka, and W. Brinkmann, Publ. Astron. Soc. Jpn. 48, 619 (1996).

    Article  ADS  Google Scholar 

  7. K. Roy, A. P. Misra, and P. Chatterjee, Phys. Plasmas 15, 032310 (2008).

  8. A. Shah and R. Saeed, Phys. Lett. A 373, 4164 (2009).

    Article  ADS  Google Scholar 

  9. T. S. Gill, A. Singh, H. Kaur, N. S. Saini, and P. Bala, Phys. Lett. A 361, 364 (2007).

    Article  ADS  Google Scholar 

  10. M. K. Deka and A. N. Dev, Plasma Phys. Rep. 44, 1 (2018).

    Article  ADS  Google Scholar 

  11. H. R. Pakzad and M. Tribeche, J. Fusion Energy 32, 171 (2013).

    Article  ADS  Google Scholar 

  12. S. I. Popel, S. V. Vladimirov, and P. K. Shukla, Phys. Plasmas 2, 716 (1995).

    Article  ADS  Google Scholar 

  13. G. Lu, Y. Liu, Y. Wang, L. Stenflo, S. I. Popel, and M. Y. Yu, J. Plasma Phys. 76, 267 (2010).

    Article  ADS  Google Scholar 

  14. J. Srinivas, S. I. Popel, and P. K. Shukla, J. Plasma Phys. 55, 209 (1996).

    Article  ADS  Google Scholar 

  15. H. R. Pakzad, Astrophys. Space Sci. 332, 269 (2011).

    Article  ADS  Google Scholar 

  16. T. I. Rajib, S. Sultana, and A. A. Mamun, IEEE Trans. Plasma Sci. 45, 718(2017).

    Article  ADS  Google Scholar 

  17. M. G. Shah, M. R. Hossen, and A. A. Mamun, J. Plasma Phys. 81, 905810517 (2015).

  18. S. A. Shan and H. Saleem, Phys. Plasmas 16, 022111 (2009).

  19. A. Barkan, N. D’Angelo, and R. L. Merlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  20. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  21. D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 418 (1994).

    Article  ADS  Google Scholar 

  22. A. Mamun and P. K.Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002).

    Article  ADS  Google Scholar 

  23. T. V. Losseva, S. I. Popel, and A. P. Golub, Plasma Phys. Rep. 38, 729 (2012).

    Article  ADS  Google Scholar 

  24. T. V. Losseva, S. I. Popel, A. P. Golub, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).

  25. S. S. Duha, M. G. M. Anowar, and A. A. Mamun, Phys. Plasmas 17, 103711 (2010).

  26. S. Ghosh, S. Sarkar, M. Khan, and M. R. Gupta, Phys. Plasmas 7, 3594 (2000).

    Article  ADS  Google Scholar 

  27. S. H. Cho, H. J. Lee, and Y. S. Kim, Phys. Rev. E 61, 4357 (2000).

    Article  ADS  Google Scholar 

  28. P. K. Shukla and M. Marklund, Phys. Scr. 2004 (T113), 36 (2004).

    Google Scholar 

  29. S. Ghosh and R. Bharuthram, Astrophys. Space Sci. 314, 121 (2008).

    Article  ADS  Google Scholar 

  30. A. Paul, A. Das, and A. Bandyopadhyay, Plasma Phys. Rep. 43, 218 (2017).

    Article  ADS  Google Scholar 

  31. S. A. El-Tantawy, N. A. El-Bedwehy, and W. M. Moslem, Phys. Plasmas 18, 052113 (2011).

  32. N. S. Saini, B. S. Chahal, and A. S. Bains, Astrophys. Space Sci. 347, 129 (2013).

    Article  ADS  Google Scholar 

  33. B. C. Kalita and S. Das, IEEE Trans. Plasma Sci. 46, 790 (2018).

    Article  ADS  Google Scholar 

  34. M. K. Deka, N. C. Adhikary, A. P. Misra, H. Bailung, and Y. Nakamura, Phys. Plasmas 19, 103704 (2012).

  35. N. C. Adhikary, A. P. Misra, H. Bailung, and J. Chutia, Phys. Plasmas 17, 044502 (2010).

  36. S. A Shan, A. U. Rahman, and A. Mushtaq, Phys. Plasmas 24, 032104 (2017).

  37. B. Shokri and S. M. Khorashadizadeh, Phys. Plasmas 11, 1689 (2004).

    Article  ADS  Google Scholar 

  38. A. Gsponer, Report No. ISRI-82-04.56 (Independent Scientific Research Institute, Oxford, England, 2009). https://arxiv.org/pdf/physics/0409157.pdf.

  39. R. Sarma, A. P. Misra, and N. C. Adhikary, Chin. Phys. B 27, 105207 (2018).

  40. M. K. Deka and A. N. Dev, Ann. Phys. 395, 45 (2018).

    Article  ADS  Google Scholar 

  41. R. A. Cairns, A. A. Mamum, R. Bingham, R. Bostrom, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  42. H. Kaur, T. S. Gill, and N. S. Saini, Chaos, Solitons Fractals 42, 1638 (2009).

    Article  ADS  Google Scholar 

  43. H. R. Pakjad, Indian J. Phys. 83, 1605 (2009).

    Article  ADS  Google Scholar 

  44. M. A. Hossen, M. M. Rahman, M. R. Hossen, and A. A. Mamun, Plasma Phys. Rep. 43, 464 (2017).

    Article  ADS  Google Scholar 

  45. D. S. Hall, C. P. Chaloner, D. A. Bryant, D. R. Lepine, and V. P. Tritakis, J. Geophys. Res.: Space Phys. 96, 7869 (1991).

    Article  ADS  Google Scholar 

  46. C. Grabbe, J. Geophys. Res.: Space Phys. 94, 17299 (1989).

    Article  ADS  Google Scholar 

  47. S. A. Elwakil, M. A. Zahran, and E. K. El-Shewy, Phys. Scr. 75, 803 (2007).

    Article  ADS  Google Scholar 

  48. F. Verheest and S. R. Pillay, Phys. Plasmas 15, 013703 (2008).

  49. E. Saberian, A. E. Kalejahi, and M. A. Ghazi, Plasma Phys. Rep. 43, 83 (2017).

    Article  ADS  Google Scholar 

  50. B. Choudhury, R. Goswami, G. C. Das, and M. P. Bora, Phys. Plasmas 20, 042902 (2013).

  51. H. K. Malik and K. Singh, IEEE Trans. Plasma Sci. 33, 1995 (2005).

    Article  ADS  Google Scholar 

  52. Y. Nejoh, J. Plasma Phys. 37, 487 (1987).

    Article  ADS  Google Scholar 

  53. S. I. Popel, A. P. Golub, T. V. Losseva, A. V. Ivlev, S. A. Khrapak, and G. Morfill, Phys. Rev. E 67, 056402 (2003).

  54. N. C. Adhikary, H. Bailung, A. R. Pal, J. Chutia, and Y. Nakamura, Phys. Plasmas 14, 103705, (2007).

Download references

Funding

B. Boro is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for the financial assistantship under CSIR Junior Research Fellowship (file no. 09/1221(0001)/2018-EMR-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Adhikary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boro, B., Dev, A.N., Saikia, B.K. et al. Nonlinear Wave Interaction with Positron Beam in a Relativistic Plasma: Evaluation of Hypersonic Dust Ion Acoustic Waves. Plasma Phys. Rep. 46, 641–652 (2020). https://doi.org/10.1134/S1063780X20060021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20060021

Keywords:

Navigation