Skip to main content

Cosmic Dusty Plasma and the Global Electric Circuit of the Earth

Abstract

The model of the global electric circuit of the Earth (GECE) is considered, which is inseparably linked with the processes in space plasma. The Earth is surrounded by cosmic plasma consisting of electrons, ions, and negatively charged dust particles. Dust particles easily penetrate through the magnetic field and the atmosphere and charge the surface of the Earth negatively. The stationary electric state is achieved when the current carried by the negative dust particles and the current of positively charged ions accelerated in the surrounding plasma become equal. Positive ions penetrate into the atmosphere through the regions with the northern and southern latitudes to altitudes of the order of 100 km, where they become nonmagnetized and can move parallel to the surface of the Earth, performing additional ionization in the anomalous structure of the E-layer, and creating the fair-weather current (of approximately 1500 A). The ions forming the fair-weather current are uniformly deposited on the negatively charged surface of the Earth. Using the data on the average dust flux onto the Earth surface and the value of the fair-weather current, it was found that the mean size of a dust particle is rd ≈ 4 × 10–7 m, its mass is md ≈ 5 × 10–17 kg, and its charge is Qd ≈ 10–16 C. The formation, charging, and discharging of clouds, as well as the causes for the effect of cosmic dust on the Earth’s weather, are discussed in the paper.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    A. M. Uman, The Lightning Discharge (Academic Press, London, 1987).

    Google Scholar 

  2. 2

    V. M. Muchnik, Physics of Thunderstorms (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  3. 3

    I. M. Imyanitov and K. S. Shifrin, Sov. Phys.–Usp. 5, 292 (1962).

    ADS  Article  Google Scholar 

  4. 4

    E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Nauka, Moscow, 2001; IOP, Bristol, 2000).

  5. 5

    E. A. Mareev and V. Yu. Trahtengerts, Priroda, No. 3, 24 (2007).

    Google Scholar 

  6. 6

    B. M. Smirnov, Phys.–Usp. 57, 1041 (2014).

    Article  Google Scholar 

  7. 7

    A. A. Andreev, L. A. Kataev, and K. P. Komrakov, Geomagn. Aeron. 13, 1042 (1973).

    Google Scholar 

  8. 8

    Ya. L. Al’pert, Propagation of Electromagnetic Waves in the Ionosphere (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  9. 9

    K. I. Gringauz, Sov. Phys.–Usp. 10, 385 (1967).

    ADS  Article  Google Scholar 

  10. 10

    A. D. Danilov, Popular Aeronomy (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  11. 11

    A. S. Kovtyuh, in Model of Cosmos, Ed. by M. I. Pa-nasyuk (Kn. dom Universitet, Moscow, 2007), Vol. 1, p. 456 [in Russian].

  12. 12

    N. A. Vlasova, B. N. Knyazev, A. S. Kovtyuh, A. G. Kozlov, M. P. Panasuk, S. Ya. Raizman, E. N. Sosnovets, O. S. Grafodatskiy, and Sh. N. Islyaev, Kosm. Issled. 22, 53 (1984).

  13. 13

    R. D. Cande, Particles in Atmosphere and Space (Reinhold, New York, 1966).

    Google Scholar 

  14. 14

    J. S. Mathis, I. W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).

    ADS  Article  Google Scholar 

  15. 15

    F. H. Ludman, Usp. Fiz. Nauk 65, 407 (1958).

    Article  Google Scholar 

  16. 16

    A. P. Boyarkina, N. V. Vasil’ev, and G. G. Gluhov, Space Matter and Earth (Nauka (Novosibirskii filial), Novosibirsk, 1986) [in Russian].

  17. 17

    A. F. Grachev, Fiz. Zemli, No. 11, 3 (2010).

    Google Scholar 

  18. 18

    R. H. Huddlestone and S. L. Leonard, Plasma Diagnostic Techniques (Academic Press, San Diego, 1965).

    Google Scholar 

  19. 19

    V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys.–Usp. 47, 447 (2004).

    Article  Google Scholar 

  20. 20

    A. Piel, Plasma Physics (Springer-Verlag, Berlin, 2010).

    Book  Google Scholar 

  21. 21

    A. Keiling, I. R. Wygant, C. Cattell, M. Johnson, M. Temerin, F. S. Mozer, C. A. Kletzing, J. Scudder, and C. T. Russell, J. Geophys. Res. 106, 5779 (2001).

    ADS  Article  Google Scholar 

  22. 22

    A. I. Rusanov, Sov. Phys. Dokl. 23, 250 (1978).

    Google Scholar 

  23. 23

    A. A. Varfolomeev, M. E. Gushchin, S. V. Korobkov, A. V. Kostrov, Y. P. Palochkin, S. E. Priver, D. A. Odzerikho, and A. V. Strikovskii, Tech. Phys. Lett. 41, 14 (2015).

    ADS  Article  Google Scholar 

  24. 24

    Ion wind, in Wikipedia. https://en.wikipedia.org/wiki/Ion_wind.

  25. 25

    V. E. Fortov, A. G. Khrapak, and I. T. Yakubov, Physics of Nonideal Plasma (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  26. 26

    A. Thornton, K. S. Virts, R. H. Holzworth, and T. P. Mitchell, Geophys. Res. Lett. 44, 9102 (2017).

    ADS  Article  Google Scholar 

  27. 27

    D. Barry, Ball Lightning and Bead Lightning (Plenum press, New York, 1980).

    Book  Google Scholar 

  28. 28

    E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Fizmatlit, Moscow, 2001; IOP Publishing, Bristol, 2000).

  29. 29

    B. Yu. Levin, Physical Theory of Meteors and Meteoric Matter in the Solar System (Izd. Akad. Nauk SSSR, Moscow, 1956) [in Russian].

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Kostrov.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kostrov, A.V. Cosmic Dusty Plasma and the Global Electric Circuit of the Earth. Plasma Phys. Rep. 46, 443–451 (2020). https://doi.org/10.1134/S1063780X20040066

Download citation

Keywords:

  • global electrical circuit of the Earth
  • cosmic dusty plasma
  • fair-weather current
  • charging of clouds
  • anomalous E-layer