Skip to main content
Log in

The Effects of Different Nuclear Reactions on Thermonuclear Burn-up Conditions of Deuterium–Tritium Fuel

  • INERTIAL FUSION
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The effects of different nuclear reactions on thermonuclear burn-up conditions of equimolar mixture of deuterium–tritium are investigated. The minimum requirements are determined by three parameters: fuel initial density, initial temperature and hot spot size. The four-temperature theory is used to calculate the critical burn-up parameter or the product of the initial density and the minimum hot spot radius. It was shown that by considering the effect of all nuclear reactions, attaining the minimum conditions required for beginning of nuclear ignitions is faster than those cases in which the effect of reactions is considered individually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. G. Rinderknecht, M. J. Rosenberg, A. B. Zylstra, B. Lahman, F. H. Seguin, J. A. Frenje, C. K. Li, M. Gatu Johnson, R. D. Petrasso, and L. F. Berzak, Phys. Plasmas 22, 082709 (2015).

    Article  ADS  Google Scholar 

  2. J. Lindl, Phys. Plasmas 2, 3933 (1995).

    Article  ADS  Google Scholar 

  3. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion—Beam Plasma Interaction, Hydrodynamics, Dense Plasma Physics (Oxford University Press, Oxford, 2009).

    Google Scholar 

  4. K. Molvig, M. Alme, R. Webster, and C. Galloway, Phys. Plasmas 16, 023301(2009).

    Article  ADS  Google Scholar 

  5. G. Cooper, Phys. Rev. D 3, 2312 (1971).

    Article  ADS  Google Scholar 

  6. A. S. Kompaneets, Sov. Phys. JETP 4, 730 (1957).

    ADS  MathSciNet  Google Scholar 

  7. R. K. Pathria, Statistical Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, 1996).

    MATH  Google Scholar 

  8. B. Nayak and S. V. G. Menon, Laser Part. Beams 30, 517 (2012).

    Article  ADS  Google Scholar 

  9. G. S. Fraley, E.J. Linnebur, R. Mason, and R. L. Morse, Phys. Fluids 17, 474(1974)

    Article  ADS  Google Scholar 

  10. M. M. Basko, Nucl. Fusion 30, 2443(1990).

    Article  MathSciNet  Google Scholar 

  11. E. N. Avrorin, L. P. Feoktistov, and L. I. Shibarshov, Sov. J. Plasma Phys. 6, 527 (1980).

    Google Scholar 

  12. A. M. Frolov, V. H. Smith, and G. T. Smith, Can. J. Phys. 80, 43(2002).

    Article  ADS  Google Scholar 

  13. A. Ghasemizad, M. Nazirzadeh, and B. Khanbabaie, Phys. Plasmas 23, 082707 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nazirzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazirzadeh, M., Mohammadi, S.T. & Nanakar, H. The Effects of Different Nuclear Reactions on Thermonuclear Burn-up Conditions of Deuterium–Tritium Fuel. Plasma Phys. Rep. 46, 306–310 (2020). https://doi.org/10.1134/S1063780X20030095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20030095

Keywords:

Navigation