Skip to main content
Log in

Plasma Diagnostic by Optical Emission Spectroscopy on Dolomite and Cross-Validation Using Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Spectroscopy and Electron Probe Micro-Analysis

  • PLASMA DIAGNOSTICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Dolomite [CaMg(CO3)2] is an important carbonate mineral mainly composed of calcium magnesium carbonate. The correct determination of magnesium content in carbonate rocks is important for accessing its suitability for different applications; however, presence of different phases with varying magnesium contents makes their analysis difficult. In the present work, a natural carbonate mineral dolomite is analyzed qualitatively and quantitatively using laser-induced breakdown spectroscopy along with X-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy and electron-probe microanalysis. The optical emission spectra recorded in 200–720 nm wavelength region revealed presence of emission lines for Ca, Mg, Al, Sr, and Na with varying intensities. We used two different techniques, that is, Boltzmann plot and Saha–Boltzmann plot methods to calculate the plasma temperature, and an average value of 4500 ± 450 K was deduced.The Stark broadening line profile method was exploited to calculate the electron number density using calcium and magnesium lines which resulted in 2.39 × 1017 cm–3. The quantitative compositional analysis was carried out using calibration-free laser-induced breakdown spectroscopy method for which the local thermodynamic equilibrium and optically thin plasma conditions were satisfied.The composition for dolomite major constituents calcium and magnesium were estimated as 68.58 and 31.41%, respectively.The results demonstrated the LIBS, EDS, and EPMA ability as an effective, powerful and complementary analytical techniques for the elemental composition analysis of carbonate minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. D. A. Cremers and L. J. Radziemski, Handbook of L-aser-Induced Breakdown Spectroscopy (Wiley, New York, 2006).

    Book  Google Scholar 

  2. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, Appl. Spectrosc. 53, 960 (1999).

    Article  ADS  Google Scholar 

  3. L. Wang, L, C. Zhang, and Y. Feng, Chin. Opt. Lett. 6, 5 (2008).

    Article  Google Scholar 

  4. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Pal-leschi, Spectrochim. Acta, Part B 65, 1 (2010).

    Article  ADS  Google Scholar 

  5. S. Pandhija, N. K. Rai, A. K. Pathak, A. K. Rai, and A. K. Choudhary, Spectrosc. Lett. 14, 579 (2014).

    Article  ADS  Google Scholar 

  6. Q. Abbass, N. Ahmed, R. Ahmed, and M. A. Baig, Plasma Chem. Plasma Process. 36, 1287 (2016).

    Article  Google Scholar 

  7. J. Yang, X. Li, J. Xu, and X. Ma, Appl. Spectrosc. 72, 129 (2018).

    Article  ADS  Google Scholar 

  8. Concepts and Models of Dolomitization, Ed. by D. H. Zenger, J. B. Dunham, and R. L. Ethington, SEPM Spec. Publ. 28 (1980).

  9. R. S. Boynton, Chemistry and Technology of Lime and Limestone (Interscience Publishers, New York, 1967).

    Google Scholar 

  10. H. A. Yeprem, E. Turedi, and S. A. Karagoz, Mater. Charact. 52, 331 (2004).

    Article  Google Scholar 

  11. G. S. Gai, Y. F. Yang, S. M. Fan, and Z. F. Cai, Powder Technol. 153, 153 (2005).

    Article  Google Scholar 

  12. M. Rabah and E. M. M. Ewais, Ceram. Int. 35, 813 (2008).

    Article  Google Scholar 

  13. Y. Iqbal, L. Lii-Cherng, M. Fahad, and R. Ubic, JOM 65, 73 (2013).

    Article  ADS  Google Scholar 

  14. M. Fahad, Y. Iqbal, M. Riaz, R. Ubic, and M. Abrar, Himalayan Geol. 37, 17 (2016).

    Google Scholar 

  15. M. A. Bertram, F. T. Mackenzie, F. C. Bischoff, and W. D. Bischoff, Am. Mineral. 76, 1889 (1991).

    Google Scholar 

  16. M. Fahad, Y. Iqbal, M. Riaz, R. Ubic, and S. A. T. Red-fern, J. Earth Sci. 27, 989 (2016).

    Article  Google Scholar 

  17. M. Fahad and S. Sundas, Geosci. J. 22, 303 (2018).

    Article  ADS  Google Scholar 

  18. J. Titschak, F. Geotz-Neunhoeffer, and J. Neubauer, Am. Mineral. 96, 1028 (2011).

    Article  ADS  Google Scholar 

  19. M. Abrar, T. Iqbal, M. Fahad, M. Andleeb, Z. Farooq, and S. Afsheen, Laser Phys. 28, 056002 (2018).

    Article  ADS  Google Scholar 

  20. M. Fahad and M. Abrar, Laser Phys. 28, 085701 (2018).

    Article  ADS  Google Scholar 

  21. M. Fahad, Z. Farooq, M. Abrar, K. H. Shah, T. Iqbal, and S. Sundas, Laser Phys. 28, 125701 (2018).

    Article  ADS  Google Scholar 

  22. M. Fahad, Z. Farooq, and M. Abrar, Appl. Opt. 58, 3501 (2019).

    Article  ADS  Google Scholar 

  23. M. Fahad, S. Ali, and Y. Iqbal, Plasma Sci. Technol. 21, 085507 (2019).

    Article  ADS  Google Scholar 

  24. A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team 2019, NIST Atomic Spectra Databese. http://physics.nist.gov/asd.

  25. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

  26. H. R. Griem, Spectral Line Broadening by Plasma (London Academic Press Inc., New York, 1974).

    Google Scholar 

  27. N. Konjevic, M. Ivkovic, and N. Sakan, Spectrochim. Acta, Part B 76, 16 (2012).

    Article  ADS  Google Scholar 

  28. R. W. P. McWhirter, in Spectral Intensities Plasma Diagnostics Techniques, Ed. by R. H. Huddleston and S. L. Leonard (Academic Press, Inc., New York, 1965).

    Google Scholar 

  29. L. M. Barcina, A. Espina, M. Suarez, J. R. Garcia, and J. Rodriguez, Thermochim. Acta 290, 181 (1997).

    Article  Google Scholar 

  30. J. Warren, Earth-Sci. Rev. 52, 1 (2000).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. Raheel Ali, Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan) for the use of the laboratory facility to perform the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fahad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahad, M., Abrar, M., Shah, K.H. et al. Plasma Diagnostic by Optical Emission Spectroscopy on Dolomite and Cross-Validation Using Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Spectroscopy and Electron Probe Micro-Analysis. Plasma Phys. Rep. 46, 283–292 (2020). https://doi.org/10.1134/S1063780X2003006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2003006X

Keywords:

Navigation