Skip to main content
Log in

Statistical Model for Quasicontinuum of Heavy Ions in Hot Plasma

  • PLASMA RADIATION
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A statistical description is proposed for the shape of heavy impurity spectra observed in tokamaks and stellarators, corresponding to the quasicontinuous radiation distribution, and called the quasicontinuum. For the tungsten ions, in particular, it is located in the spectral range of ∼2 to 7 nm. The method is based on the statistical plasma model of atom, which allows expressing the quasicontinuum structure through the electron density distribution of multielectron ions. The Slater distribution is used as a model density distribution. The quasicontinuum is formed by the great number of closely spaced lines of heavy ions with different degrees of ionization, and its calculation is very complicated. A comparison of the results obtained within the statistical approach with the results of the level-by-level quantum mechanical calculations shows that such a model plausibly describes the envelopes of the individual line arrays in the ion spectra. In contrast to the level-by-level calculation codes, the statistical atom model is rather simple and it can be used by a large number of users. The quasicontinuum was simulated for the tungsten, gold, lead, and gadolinium ions, which are observed in plasmas of fusion facilities. The simulation results are in fairly good agreement with the experimental data. The studies of the tungsten quasicontinuum are of interest from the point of view of plasma diagnostics, as well as determination of the tungsten impurity density and its transport in fusion facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. C. Isler, R. V. Neidigh, and R. D. Cowan, Phys. Lett. A 63, 295 (1977). https://doi.org/10.1016/0375-9601(77)90908-2

    Article  ADS  Google Scholar 

  2. E. Hinnov and M. Mattioli, Phys. Lett. A 66, 109 (1978). https://doi.org/10.1016/0375-9601(78)90010-5

    Article  ADS  Google Scholar 

  3. B. M. Johnson, K. W. Jones, J. L. Cecchi, E. Hinnov, and T. H. Kruse, Phys. Lett. A 70, 320 (1979). https://doi.org/10.1016/0375-9601(79)90136-1

    Article  ADS  Google Scholar 

  4. M. Finkenthal, L. L. Huang, S. Lippmann, H. W. Moos, P. Mandelbaum, J. L. Klapisch, and the TEXT Group, Phys. Lett. A 127, 255 (1988). https://doi.org/10.1016/0375-9601(88)90691-3

    Article  ADS  Google Scholar 

  5. K. Asmussen, K. B. Fournier, J. M. Laming, R. Neu, J. F. Seely, R. Dux, W. Engelhardt, J. C. Fuchs, and the ASDEX Upgrade Team, Nucl. Fusion 38, 967 (1998). https://doi.org/10.1088/0029-5515/38/7/302

    Article  Google Scholar 

  6. T. Pütterich, R. Neu, C. Biedermann, R. Radtke, and the ASDEX Upgrade Team, J. Phys. B 38, 3071 (2005). https://doi.org/10.1088/0953-4075/38/16/017

    Article  ADS  Google Scholar 

  7. T. Pütterich, R. Neu, R. Dux, A. D. Whiteford, M. G. O’Mullane, and the ASDEX Upgrade Team, Plasma Phys. Control. Fusion 50, 085016 (2008). https://doi.org/10.1088/0741-3335/50/8/085016

    Article  ADS  Google Scholar 

  8. T. Nakano, N. Asakura, H. Kubo, J. Janagibayashi, and Y. Ueda, Nucl. Fusion 49, 1150024 (2009). https://doi.org/10.1088/0029-5515/49/11/115024

    Article  Google Scholar 

  9. T. Pütterich, R. Neu, R. Dux, A. D. Whiteford, M. G. O’Mullane, and H. P. Summers, Nucl. Fusion 50, 025012 (2010). https://doi.org/10.1088/0029-5515/50/2/025012

    Article  ADS  Google Scholar 

  10. J. Yanagibayashi, T. Nakano, A. Iwamae, H. Kubo, M. Hasuo, and K. Itami, J. Phys. B: At. Mol. Opt. Phys. 43, 144013 (2010). https://doi.org/10.1088/0953-4075/43/14/144013

    Article  ADS  Google Scholar 

  11. T. Pütterich, R. Dux, M. N. A. Beurskens, V. Bobkov, S. Brezinsek, J. Bucalossi, J. W. Coenen, I. Coffey, A. Czarnecka, C. Giroud, E. Joffrin, K. D. Lawson, M. Lehnen, E. de la Luna, J. Mailloux, et al., in Proceedings of the 24th IAEA Fusion Energy Conference, San Diego, 2012, Paper EX/P3.15.

  12. T. Pütterich, R. Dux, R. Neu, M. Bernert, M. N. A. Be-urskens, V. Bobkov, S. Brezinsek, C. Challis, J. W. Coenen, I. Coffey, A. Czarnecka, C. Giroud, P. Jacquet, E. Joffrin, A. Kallenbach, et al., Plasma Phys. Control. Fusion 55, 124036 (2013). https://doi.org/10.1088/0741-3335/55/12/124036

    Article  ADS  Google Scholar 

  13. I. A. Zemtsov, V. A. Krupin, M. R. Nurgaliev, L. A. Klyuchnikov, A. R. Nemets, A. Yu. Dnestrovskii, and D. V. Sarychev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 40 (2), 29 (2017). https://doi.org/10.21517/0202-3822-2017-40-2-29-35

  14. V. A. Krupin, M. R. Nurgaliev, L. A. Klyuchnikov, A. R. Nemets, I. A. Zemtsov, A. Yu. Dnestrovskij, D. V. Sarychev, V. S. Lisitsa, V. A. Shurygin, D. S. Leontiev, A. A. Borschegovskij, S. A. Grashin, D. V. Ryjakov, D. S. Sergeev, N. A. Mustafin, et al., Nucl. Fusion 57, 066041 (2017). https://doi.org/10.1088/1741-4326/aa69c5

    Article  ADS  Google Scholar 

  15. L. Zhang, S. Morita, Z. Xu, P. F. Zhang, Q. Zang, Y. M. Duan, H. Q. Liu, H. L. Zhao, F. Ding, T. Ohishi, W. Gao, J. Huang, X. D. Yang, Y. J. Chen, Z. W. Wu, et al., Nucl. Materials and Energy 12, 774 (2017). https://doi.org/10.1016/j.nme.2017.01.009

    Article  Google Scholar 

  16. V. A. Krupin, L. A. Klyuchnikov, M. R. Nurgaliev, A. R. Nemets, I. A. Zemtsov, A. V. Melnikov, T. B. Myalton, D. V. Sarychev, D. S. Sergeev, A. V. Sushkov, V. M. Trukhin, S. N. Tugarinov, and N. N. Naumenko, Plasma Phys. Control. Fusion 60, 115003 (2018). https://doi.org/10.1088/1361-6587/aada6b

    Article  ADS  Google Scholar 

  17. C. S. Harte, C. Suzuki, T. Kato, H. A. Sakaue, D. Kato, K. Sato, N. Tamura, S. Sudo, R. D’Arcy, E. Sokell, J. White, and G. O’Sillivan, J. Phys. B: At. Mol. Opt. Phys. 43, 205004 (2010). https://doi.org/10.1088/0953-4075/43/20/205004

    Article  ADS  Google Scholar 

  18. C. Suzuki, I. Murakami, F. Koike, N. Tamura, H. A. Sa-kaue, S. Morita, M. Goto, D. Kato, H. Ohashi, T. Higashiguchi, S. Sudo, and G. O’Sullivan, Plasma Phys. Control. Fusion 59, 014009 (2017). https://doi.org/10.1088/0741-3335/59/1/014009

    Article  ADS  Google Scholar 

  19. C. Suzuki, F. Koike, I. Murakami, N. Tamura, and S. Sudo, Atoms 6, 24 (2018). https://doi.org/10.3390/atoms6020024

    Article  ADS  Google Scholar 

  20. S. S. Churilov, R. R. Kildiyarova, A. N. Ryabtsev, and S. V. Sadovsky, Phys. Scr. 80, 045303 (2009). https://doi.org/10.1088/0031-8949/80/04/045303

    Article  ADS  Google Scholar 

  21. A. V. Demura, M. B. Kadomtsev, V. S. Lisitsa, and V. A. Shurygin, JETP Lett. 98, 786 (2013). https://doi.org/10.7868/S0370274X13240053

    Article  ADS  Google Scholar 

  22. A. V. Demura, M. B. Kadomtsev, V. S. Lisitsa, and V. A. Shurygin, J. Phys. B: At. Mol. Opt. Phys. 48, 055701 (2015). https://doi.org/10.1088/0953-4075/48/5/055701

    Article  ADS  Google Scholar 

  23. A. V. Demura, M. B. Kadomtsev, V. S. Lisitsa, and V. A. Shurygin, JETP Lett. 101, 85 (2015). https://doi.org/10.7868/S0370274X15020046

    Article  ADS  Google Scholar 

  24. A. V. Demura, M. B. Kadomtsev, V. S. Lisitsa, and V. A. Shurygin, High Energy Density Phys. 15, 49 (2015). https://doi.org/10.1016/j.hedp.2015.03.006

    Article  ADS  Google Scholar 

  25. A. V. Demura, M. B. Kadomtsev, V. S. Lisitsa, and V. A. Shurygin, Atoms 3, 162 (2015). https://doi.org/10.3390/atoms3020162

    Article  ADS  Google Scholar 

  26. D. S. Leontyev and V. S. Lisitsa, Contrib. Plasma Phys. 56, 846 (2016). https://doi.org/10.1002/ctpp.201500075

    Article  ADS  Google Scholar 

  27. A. V. Demura, D. S. Leontyev, V. S. Lisitsa, and A. V. Shurygin, JETP 125, 663 (2017).

    Article  ADS  Google Scholar 

  28. A. V. Demura, D. S. Leontyev, V. S. Lisitsa, and A. V. Shurygin, JETP Lett. 106, 429 (2017). https://doi.org/10.7868/S0370274X17190031

    Article  ADS  Google Scholar 

  29. S. F. Garanin and E. M. Palagina, JETP 98, 1098 (2004).

    Article  ADS  Google Scholar 

  30. S. F. Garanin and E. M. Palagina, JETP 104, 527 (2007).

    Article  ADS  Google Scholar 

  31. S. F. Garanin, E. M. Kravets, V. I. Mamyshev, and V. A. Tokarev, Plasma Phys. Rep. 35, 684 (2009).

    Article  ADS  Google Scholar 

  32. U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968).

    Article  ADS  Google Scholar 

  33. E. Fermi, Scientific Papers (Nauka, Moscow, 1971), Vol. I, p. 284 [in Russian].

    Google Scholar 

  34. A. B. Migdal and V. P. Krainov, Approximation Methods in Quantum Mechanics (Benjamin, New York, 1969) [Russ. original, Nauka, Moscow, 1966].

    Google Scholar 

  35. W. Brandt and S. Lundquist, Phys. Rev. 139, A612 (1965). https://doi.org/10.1103/PhysRev.139.A612

    Article  ADS  Google Scholar 

  36. J. C. Slater, Phys. Rev. 36, 57 (1930). https://doi.org/10.1103/PhysRev.36.57

    Article  ADS  Google Scholar 

  37. I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Fizmatlit, Moscow, 1963; Pergamon, New York, 1972).

  38. M. Ya. Amus’ya, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 2242 (1981).

    Google Scholar 

  39. E. Fermi, Z. Phys. 29, 315 (1924). https://doi.org/10.1007/BF03184853

    Article  ADS  Google Scholar 

  40. V. A. Astapenko, Interaction of Radiation with Atoms and Nanoparticles (Izdatel’skii Dom Intellekt, Dolgoprudnyi, 2010) [in Russian].

  41. J. Bauche, C. Bauche-Arnoult, and O. Peyrusse, Atomic Properties in Hot Plasmas. From Levels to Superconfigurations (Springer, Grenoble, 2015).

    Book  Google Scholar 

  42. L. Liu, D. Kilbane, P. Dunne, X. Wang, and G. O’Sullivan, Atoms 5, 20 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Leontyev.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demura, A.V., Leontyev, D.S., Lisitsa, V.S. et al. Statistical Model for Quasicontinuum of Heavy Ions in Hot Plasma. Plasma Phys. Rep. 46, 241–251 (2020). https://doi.org/10.1134/S1063780X20030046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20030046

Keywords:

Navigation