Skip to main content
Log in

Three-Dimensional Self-Gravito-Acoustic Solitary Waves in a Degenerate Quantum Plasma System

  • OSCILLATIONS AND WAVES IN PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Three-dimensional self-gravito-acoustic solitary waves (SGASWs) in a general (but realistic) self-gravitating degenerate quantum plasma media consisting of heavy nuclei/elements and degenerate electrons are studied. The reductive perturbation method, which is valid for small but finite amplitude SGASWs, is employed to derive the (3+1)-dimensional cylindrical Korteweg–de Vries (cKdV) equation (also known as cylindrical Kadomtsev–Petviashvili equation). To show the parametric regime corresponding to the existence of the localized SGASWs the energy integral equation, which is derived from cKdV equation, is used. Moreover, the effects of the physical parameters on the SGASWs are discussed. The implication of our results for space and laboratory plasmas is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley-VCH Verlag, Weinheim, 2004).

    Google Scholar 

  2. D. Koester and G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990).

    Article  ADS  Google Scholar 

  3. D. Koester, Astron. Astrophys. Rev. 11, 33 (2002).

    Article  ADS  Google Scholar 

  4. S. Chandrasekhar, Astrophys. J. 74, 81 (1931).

    Article  ADS  Google Scholar 

  5. R. H. Fowler  and E. A. Milne, J. Astrophys. Astron. 15, 241 (1994).

    Article  ADS  Google Scholar 

  6. B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, et al., Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Kurkela and A. Vuorinen, Phys. Rev. Lett. 117, 042501 (2016).

    Article  ADS  Google Scholar 

  8. M. Asaduzzaman, A. Mannan, and A. A. Mamun, Phys. Plasmas 24, 052102 (2017).

    Article  ADS  Google Scholar 

  9. A. A. Mamun, M. Amina, and R. Schlikeiser, Phys. Plasmas 23, 094503 (2016).

    Article  ADS  Google Scholar 

  10. R. P. Drake, Phys. Plasmas 16, 055501 (2009).

    Article  ADS  Google Scholar 

  11. R. P. Drake, Phys. Today 63, 28 (2010).

    Article  Google Scholar 

  12. R. S. Fletcher, X. L. Zhang, and S. L. Rolston, Phys. Rev. Lett. 96, 105003 (2006).

    Article  ADS  Google Scholar 

  13. T. C. Killian, Nature (London) 441, 297 (2006).

    Article  ADS  Google Scholar 

  14. S. H. Glenzer and R. Redmer, Rev. Mod. Phys. 81, 1625 (2009).

    Article  ADS  Google Scholar 

  15. P. K. Shukla and B. Eliasson, Rev. Mod. Phys. 83, 885 (2011).

    Article  ADS  Google Scholar 

  16. P. K. Shukla, A. A. Mamun, and D. A. Mendis, Phys. Rev. E 84, 026405 (2011).

    Article  ADS  Google Scholar 

  17. A. Vanderburg, J. A. Johnson, S. Rappaport, A. Bieryla, J. Irwin, J. A. Lewis, D. Kipping, W. R. Brown, P. Dufour, D. R. Ciardi, R. Angus, L. Schaefer, D. W. Latham, D. Charbonneau, C. Beichman, et al., Nature 526, 546 (2015).

    Article  ADS  Google Scholar 

  18. A. Witze, Nature 510, 196 (2014).

    Article  ADS  Google Scholar 

  19. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  20. S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4 (1974).

    Article  ADS  Google Scholar 

  21. W. M. Moslem, R. Sabry, and P. K. Shukla, Phys. Plasmas 17, 032305 (2010).

    Article  ADS  Google Scholar 

  22. S. Guo, H. Wang, and L. Mei, Phys. Plasmas 19, 063701 (2010).

    Article  ADS  Google Scholar 

  23. S. Reyad, M. M. Selim, A. EL-Depsy, and S. K. El-Labany, Phys. Plasmas 25, 083701 (2018).

    Article  ADS  Google Scholar 

  24. M. M. Selim and U. M. Abdelsalam, Astrophys. Space Sci. 353, 535 (2014).

    Article  ADS  Google Scholar 

  25. W. M. Moslem, U. M. Abdelsalam, R. Sabry, E. F. El-Shamy, and S. K. El-Labany, J. Plasma Phys. 76, 453 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

A. Mannan and S. Sultana are grateful to the Jahangirnagar University (Dhaka, Bangladesh) for granting the study leave for their post-doctoral research work.

Funding

This work was supported by the Alexander von Humboldt Stiftung (Bonn, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mannan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannan, A., Sultana, S., Schlickeiser, R. et al. Three-Dimensional Self-Gravito-Acoustic Solitary Waves in a Degenerate Quantum Plasma System. Plasma Phys. Rep. 46, 195–199 (2020). https://doi.org/10.1134/S1063780X20020075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20020075

Keywords:

Navigation