Skip to main content
Log in

Plasma Jet-Assisted Synthesis of Graphene Using a DC Plasma Torch

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Conditions of substrate-free syntheses of graphene and graphene-based systems based on conversion of liquid and gaseous carbon precursors in helium, nitrogen, and argon plasma jets generated by a dc plasma torch at a reduced pressure are investigated. Using a number of physical characterization techniques, it is shown that bulk-synthesized (i.e., substrate-free) graphene has the morphology of crumpled paper. By changing the geometry of the flow-through section of the reactor, without using substrates, hydrogenated graphene structures are synthesized. Nitrogen- or copper-doped graphene can be prepared using nitrogen plasma. Thermally stable graphene oxide is obtained by introducing alcohols into argon or helium plasmas. It is concluded that graphene materials can be prepared by the plasma-assisted one-step syntheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    ADS  Google Scholar 

  2. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Nat. Acad. Sci. 102, 10451 (2005).

    Article  ADS  Google Scholar 

  3. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindar, Nanomaterials 48, 7752 (2009).

    Google Scholar 

  4. R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, Nature Mater. 14, 271 (2015).

    Article  ADS  Google Scholar 

  5. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 92 (2012).

    Article  Google Scholar 

  6. M. Li, D. Liu, D. Wei, X. Song, D. Wei, and A. T. S. Wee, Adv. Sci. 3, 1600003 (2016).

    Article  Google Scholar 

  7. J. Kim, S. B. Heo, G. H. Gu, and J. S. Suh, Nanotechnology 21, 095601 (2010).

    Article  ADS  Google Scholar 

  8. A. Shashurin and M. Keidar, J. Phys. D 48, 314007 (2015).

    Article  ADS  Google Scholar 

  9. J. V. R. Heberlein, Pure Appl. Chem. 64, 629 (1992).

    Article  Google Scholar 

  10. L. Wang, Z. Sofer, J. Luxab, and M. Pumera, J. Mater. Chem. C. 2, 2887 (2014).

    Article  Google Scholar 

  11. E. J. Duplock, M. Scheffler, and P. J. D. Lindan, Phys. Rev. Lett. 92, 225502 (2004).

    Article  ADS  Google Scholar 

  12. J. M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp, J. M. Gottfried, H.-P. Steinruck, E. Spiecker, F. Hauke, and A. Hirsch, Nature Chem. 3, 279 (2011).

    Article  ADS  Google Scholar 

  13. V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, and R. Zboril, Chem. Rev. 116, 5464 (2016).

    Article  Google Scholar 

  14. Ceramic Matrix Composites: Microstructure, Properties and Aplications, Ed. by I. M. Low (Woodhead, Cambridge, 2006).

    Google Scholar 

  15. P. Palmero, F. Kern, F. Sommer, M. Lombardi, R. Gadow, and L. Montanaro, J. Appl Biomater. Funct. Mater. 12, 113 (2014).

    Google Scholar 

  16. J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, J. Appl. Polym. Sci. 128, 4217 (2013).

    Article  Google Scholar 

  17. P. Gupta, D. Kumar, M. A. Quraishi, and O. Parkash, Adv. Nanomater. 79, 231 (2016).

    Article  Google Scholar 

  18. R. Kh. Amirov, E. Kh. Isakayev, M. B. Shavelkina, and T. B. Shatalova, Usp. Prikl. Fiz. 2, 217 (2014).

    Google Scholar 

  19. M. V. Ilyichev, V. I. Kalinin, M. B. Shavelkina, and D. I. Yusupov, Certificate of RF State Registration of Computer Program No. 2018666404; applied December 6, 2018; registered December 17, 2018.

  20. Plasma Diagnostics, Ed. by W. Lochte-Holtgreven (North-Holland, Amsterdam, 1968).

    Google Scholar 

  21. Z. Du, S. Wang, C. Kong, Q. Deng, G. Wang, C. Liang, and H. Tang, J. Solid State Electrochem. 19, 1541 (2015).

    Article  Google Scholar 

  22. G. W. Huber, S. Iborra, and A. Corma, Chem. Rev. 106, 4044 (2006).

    Article  Google Scholar 

  23. E. Tatarova, A. Dias, J. Henriques, A. M. Botelho do Rego, A. M. Ferraria, M. V. Abrashev, C. C. Luhrs, J. Phillips, F. M. Dias, and C. M. Ferreira, J. Phys. D 47, 385501 (2014).

    Article  ADS  Google Scholar 

  24. A. A. General, A. K. Shuaibov, V. A. Kel’man, and Yu. V. Zhmenyak, Tech. Phys. Lett. 40, 482 (2014).

    Article  ADS  Google Scholar 

  25. H. He, J. Klinowski, M. Forsterb, and A. Lerf, Chem. Phys. Lett. 287, 53 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Shavelkina.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shavelkina, M.B., Amirov, R.K., Kavyrshin, D.I. et al. Plasma Jet-Assisted Synthesis of Graphene Using a DC Plasma Torch. Plasma Phys. Rep. 45, 1080–1086 (2019). https://doi.org/10.1134/S1063780X19110096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19110096

Navigation