Skip to main content
Log in

Formation and Evolution of Dusty Plasma Structures in the Ionospheres of the Earth and Mars

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A self-consistent model of the formation and evolution of dusty plasma structures in the ionospheres of the Earth and Mars is presented. The model allows describing the formation of a stratified dust structure as a result of dust cloud evolution in the Earth’s ionosphere. The structure forms due to the splitting of the primary cloud and is characterized by the presence of a cluster of dust grains at altitudes corresponding to noctilucent clouds and polar mesosphere summer echoes. The characteristic formation time of polar mesospheric clouds in the Earth’s ionosphere obtained within this model agrees with observational data. The possibility of the formation of oversaturated carbon dioxide clouds in the Martian ionosphere, similar to noctilucent clouds in the Earth’s ionosphere, is shown. It is demonstrated that phenomena similar to polar mesosphere summer echoes on the Earth can also take place in the Martian ionosphere. The theoretically estimated dimensions and charges of dust grains in the Martian ionosphere agree with observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  2. V. N. Tsytovich, G. E. Morfill, S. V. Vladimirov, and H. M. Thomas, Elementary Physics of Complex Plasmas (Springer, Berlin, 2008).

    Book  Google Scholar 

  3. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Reports 421, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. I. Popel, S. I. Kopnin, M. Y. Yu, J. X. Ma, and F. Huang, J. Phys. D 44, 174036 (2011).

    Article  ADS  Google Scholar 

  5. B. A. Klumov, S. I. Popel, and R. Bingham, JETP Lett. 72, 364 (2000).

    Article  ADS  Google Scholar 

  6. B. A. Klumov, G. E. Morfill, and S. I. Popel, JETP 100, 152 (2005).

    Article  ADS  Google Scholar 

  7. B. A. Klumov, S. V. Vladimirov, and G. E. Morfill, JETP Lett. 82, 632 (2005).

    Article  ADS  Google Scholar 

  8. U. von Zahn, G. Baumgarten, U. Berger, J. Fiedler, and P. Hartogh, Atmos. Chem. Phys. 4, 2449 (2004).

    Article  ADS  Google Scholar 

  9. J. Y. N. Cho and J. Rottger, J. Geophys. Res. 102, 2001 (1997).

    Article  ADS  Google Scholar 

  10. M. Gadsden and W. Schröder, Noctilucent Clouds (Springer-Verlag, Berlin, 1989).

    Book  Google Scholar 

  11. F. Montmessin, J. L. Bertaux, E. Quémerais, O. Korablev, P. Rannou, F. Forget, S. Perriera, D. Fussend, S. Lebonnoisc, and A. Rébéraca, Icarus 183, 403 (2006).

    Article  ADS  Google Scholar 

  12. F. Montmessin, B. Gondet, J. P. Bibring, Y. Langevin, P. Drossart, F. Forget, and T. Fouchet, J. Geophys. Res. 112, 90 (2007).

    Google Scholar 

  13. J. A. Whiteway, L. Komguem, C. Dickinson, C. Cook, M. Illnicki, J. Seabrook, V. Popovici, T. J. Duck, R. Davy, P. A. Taylor, J. Pathak, D. Fisher, A. I. Carswell, M. Daly, V. Hipkin, et al., Science 325, 68 (2009).

    Article  ADS  Google Scholar 

  14. P. O. Hayne, D. A. Paige, J. T. Schofield, D. M. Kass, A. Kleinbohl, N. G. Heavens, and D. J. McCleese, J. Geophys. Res. 117, E08014 (2012).

    Article  ADS  Google Scholar 

  15. K. Amyx, Z. Sternovsky, S. Knappmiller, S. Robertson, M. Horanyi, and J. Gumbel, J. Atmos. Sol.-Terr. Phys. 70, 61 (2008).

    Article  ADS  Google Scholar 

  16. N. Kaifler, G. Baumgarten, J. Fiedler, R. Latteck, F.‑J. Lübken, and M. Rapp, Atmos. Chem. Phys. Discuss. 10, 25081 (2010).

    Article  ADS  Google Scholar 

  17. A. Mahmoudian and W. A. Scales, J. Geophys. Res. 117, A02304 (2012).

    ADS  Google Scholar 

  18. N. Kaifler, G. Baumgarten, A. R. Klekociuk, S. P. Alexander, J. Fiedler, and F.-J. Lübken, J. Atmos. Sol.-Terr. Phys. 104, 244 (2013).

    Article  ADS  Google Scholar 

  19. S. Robertson, S. Dickson, M. Horányi, Z. Sternovsky, M. Friedrich, D. Janches, L. Megner, and B. Williams, J. Atmos. Sol.-Terr. Phys. 118, 161 (2014).

    Article  ADS  Google Scholar 

  20. R. P. Turco, O. B. Toon, R. C. Whitten, R. G. Keesee, and D. Hollenbach, Planet. Space Sci. 30, 1147 (1982).

    Article  ADS  Google Scholar 

  21. F. Forget, F. Montmessin, J. L. Bertaux, F. González-Galindo, S. Lebonnois, E. Quémerais, A. Reberac, E. Dimarellis, and M. A. López-Valverde, J. Geophys. Res. 114, 01004 (2009).

    Article  Google Scholar 

  22. J. L. Fox, M. Benna, P. R. Mahaffy, and B. M. Jakosky, Geophys. Rev. Lett. 42, 8977 (2015).

    Article  ADS  Google Scholar 

  23. A. Yu. Dubinskii and S. I. Popel, JETP Lett. 96, 21 (2012).

    Article  ADS  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  25. B. J. Murray and J. M. C. Plane, Atmos. Chem. Phys. 5, 1027 (2005).

    Article  ADS  Google Scholar 

  26. F. F. Chen, in Plasma Diagnostic Techniques, Ed. by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965; Mir, Moscow, 1967), p. 113.

  27. M. S. Barnes, J. H. Keller, J. C. Forster, J. A. O’Neill, and D. K. Coultas, Phys. Rev. Lett. 68, 313 (1992).

    Article  ADS  Google Scholar 

  28. B. Feuerbacher and B. Fitton, J. Appl. Phys. 43, 1563 (1972).

    Article  ADS  Google Scholar 

  29. A. Schmitt-Ott, P. Schurtenberger, and H. C. Siegmann, Phys. Rev. Lett. 45, 1284 (1980).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research (project no. 18-02-00341-a) and within Major Project of the RF Ministry of Education and Science (Moscow, Russia) MP19-270 “Problems of the Origin and Evolution of the Universe with the Use of Methods of Ground-Based Observations and Space Research.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Popel.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinskii, A.Y., Reznichenko, Y.S. & Popel, S.I. Formation and Evolution of Dusty Plasma Structures in the Ionospheres of the Earth and Mars. Plasma Phys. Rep. 45, 928–935 (2019). https://doi.org/10.1134/S1063780X19100039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19100039

Navigation