Advertisement

Plasma Physics Reports

, Volume 45, Issue 8, pp 732–740 | Cite as

Energy Loss and Microturbulence under Multipulse ECR Plasma Heating at the L-2M Stellarator

  • G. M. BatanovEmail author
  • V. D. BorzosekovEmail author
  • D. G. Vasilkov
  • S. E. Grebenshchikov
  • L. V. Kolik
  • E. M. Konchekov
  • A. A. Letunov
  • A. E. Petrov
  • V. D. Stepakhin
  • N. K. Kharchev
  • A. A. Kharchevskii
STELLARATORS
  • 12 Downloads

Abstract

In experiments on multipulse on-axis electron cyclotron resonance heating (ECRH) of plasma by a series of microwave pulses at the L-2M stellarator, several phases of plasma energy loss were observed: the short stage of low-energy loss, the stage of rapid increase in energy loss, the quasi-steady stage, and the relaxation stage between the heating pulses. In the stage of rapid increase in energy loss, the energy loss power is two or more times higher than that in the relaxation stage at the same energy of the plasma column. Short-wavelength plasma density fluctuations were measured using both the ordinary and extraordinary microwave collective scattering technique. It is found that, in the quasi-steady stage, the amplitude of density fluctuations is much lower than that in the preceding heating stages. The fluctuation amplitude lowers just after the restructuring of the density profile and establishment of a steady-state hollow density profile due to the density pump-out effect. The amplitude of large-scale density fluctuations at the plasma periphery recorded by a Doppler reflectometer remains unchanged during the ECRH pulses and in the time intervals between them. However, when the stage of rapid increase in energy loss begins, the shape of the density fluctuation spectrum changes significantly. The initially narrow spectrum with one peak near the zero frequency broadens, the amplitude of the central peak decreases, and two additional peaks at frequencies of 0.7 and −0.7 MHz appear.

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no.18-02-00621.

REFERENCES

  1. 1.
    G. M. Batanov, M. S. Berezhetskii, V. D. Borzosekov, S. E. Grebenshchikov, I. A. Grishina, V. A. Ivanov, N. K. Kharchev, A. A. Kharchevsky, Yu. V. Kholnov, L. V. Kolik, E. M. Konchekov, A. A. Letunov, V. P. Logvinenko, D. V. Malakhov, A. I. Meshcheryakov, et al., in Proceedings of the 44th EPS Conference on Plasma Physics and Controlled Fusion, Belfast, 2017, ECA 41F, P2.154 (2017). http://ocs.ciemat.es/EPS2017PAP/pdf/P2.154.pdf.Google Scholar
  2. 2.
    D. K. Akulina, G. A. Gladkov, Y. I. Nechaev, and O. I. Fedyanin, Plasma Phys. Rep. 23, 28 (1997).ADSGoogle Scholar
  3. 3.
    A. I. Meshcheryakov, I. Yu. Vafin, and I. A. Grishina, Instrum. Exp. Tech. 61, 842 (2018).CrossRefGoogle Scholar
  4. 4.
    A. V. Knyazev, A. A. Letunov, and V. P. Logvinenko, Instrum. Exp. Tech. 47, 230 (2004).CrossRefGoogle Scholar
  5. 5.
    G. M. Batanov, V. D. Borzosekov, L. M. Kovrizhnykh, L. V. Kolik, E. M. Konchekov, D. V. Malakhov, A. E. Petrov, K. A. Sarksyan, N. N. Skvortsova, V. D. Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 39, 444 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    G. M. Batanov, V. D. Borzosekov, L. V. Kolik, D. V. Malakhov, A. E. Petrov, A. A. Pshenichnikov, K. A. Sarksyan, N. N. Skvortsova, and N. K. Kharchev, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 2, 70 (2011).Google Scholar
  7. 7.
    G. M. Batanov, V. D. Borzosekov, D. V. Malakhov, and V. D. Stepakhin, in XLIV International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2017, Book of Abstracts, p. 119. http://www.fpl.gpi.ru/Zvenigorod/XLIV/Mu/en/CM-Batanov_e.docx.Google Scholar
  8. 8.
    A. A. Pshenichnikov, L. V. Kolik, N. I. Malykh, A. E. Petrov, M. A. Tereshchenko, N. K. Kharchev, and Yu. V. Khol’nov, Plasma Phys. Rep. 31, 554 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    V. V. Alikaev, A. A. Bagdasarov, N. L. Vasin, V. A. Vershkov, S. A. Grashin, D. L. Rudakov, A. V. Sushkov, A. V. Chankin, and V. V. Chistyakov, in Proceedings of the 17th EPS Conference on Controlled Fusion and Plasma Heating, Amsterdam, 1990, ECA 14B, 1076 (1990).Google Scholar
  10. 10.
    K. Lackner, O. Gruber, F. Wagner, G. Becker, M. Bessenrodt-Weberpals, B. Bomba, H.-S. Bosch, H. Bruhns, R. Buchse, A. Carlson, G. Dodel, A. Eberhagen, H.‑U. Fahrbach, G. Fussmann, O. Gehre, et al., Plasma Phys. Controlled Fusion 31, 1629 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    G. M. Batanov, V. D. Borzosekov, L. V. Kolik, E. M. Konchekov, D. V. Malakhov, A. E. Petrov, K. A. Sarksyan, V. D. Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 43, 1052 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    G. M. Batanov, V. D. Borzenkov, E. M. Konchenkov, D. V. Malakhov, K. A. Sarksyan, V. D. Stepakhin, and N. K. Kharchev, Inzh. Fiz., No. 10, 56 (2013).Google Scholar
  13. 13.
    E. V. Suvorov and A. A. Fraiman, Sov. J. Plasma Phys. 6, 639 (1980).ADSGoogle Scholar
  14. 14.
    A. S. Sakharov, J. Phys. Conf. Ser. 1094, 012011 (2018).CrossRefGoogle Scholar
  15. 15.
    E. Z. Gusakov and A. Yu. Popov, Nucl. Fusion 51, 073028 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    K. Itoh, S. I. Itoh, and A. Fukuyama, J. Phys. Soc. Jpn. 58, 482 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    U. Stroth, T. Geist, J. P. T. Koponen, H.-J. Hartfuß, P. Zeiler, and ECRH and W7-AS team, Phys. Rev. Lett. 82, 928 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    V. Erckmann and U. Gasparino, Plasma Phys. Controlled Fusion 36, 1869 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    V. F. Andreev, A. A. Borschegovskij, V. V. Chistyakov, Yu. N. Dnestrovskij, E. P. Gorbunov, N. V. Kasyanova, S. E. Lysenko, A. V. Melnikov, T. B. Myalton, I. N. Roy, D. S. Sergeev, and V. N. Zenin, Plasma Phys. Controlled Fusion 58, 055008 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    S. Wang, H. Liu, Y. Jie, Q. Zang, B. Lyu, T. Zhang, L. Zeng, N. Zhang, N. Shi, T. Lan, Z. Zou, W. Li, Y. Yao, X. Wei, H. Lian, et al., Plasma Sci. Technol. 19, 015102 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    X. Wang, S. Mordijck, E. J. Doyle, T. L. Rhodes, L. Zeng, G. R. McKee, M. E. Austin, O. Meneghini, G. M. Staebler, and S. P. Smith, Nucl. Fusion 57, 116046 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    V. A. Vershkov, D. A. Shelukhin, G. F. Subbotin, Yu. N. Dnestrovskij, A. V. Danilov, A. V. Melnikov, L. G. Eliseev, S. G. Maltsev, E. P. Gorbunov, D. S. Sergeev, S. V. Krylov, T. B. Myalton, D. V. Ryzhakov, V. M. Trukhin, V. V. Chistiakov, et al., Nucl. Fusion 55, 063014 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    T. S. Hahm and P. H. Diamond, J. Korean Phys. Soc. 73, 747 (2018).  https://doi.org/10.3938/jkps.73.747 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. M. Batanov
    • 1
    Email author
  • V. D. Borzosekov
    • 1
    Email author
  • D. G. Vasilkov
    • 1
    • 2
  • S. E. Grebenshchikov
    • 1
  • L. V. Kolik
    • 1
  • E. M. Konchekov
    • 1
  • A. A. Letunov
    • 1
  • A. E. Petrov
    • 1
  • V. D. Stepakhin
    • 1
  • N. K. Kharchev
    • 1
  • A. A. Kharchevskii
    • 1
  1. 1.Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations