Skip to main content
Log in

Radiative and Gravitational Modes and Instabilities in an Inhomogeneous Magneto Dusty Plasma with Charge Variation

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The Jeans instability of collisional magnetized dusty plasmas is examined incorporating polarization force, charge variation of dust grains, and radiative cooling of ion and electron species. The collisional effects of dust grains with neutrals are considered with sufficient background of neutral particles. A general dispersion relation is obtained using normal mode analysis technique which is found to be modified due to polarization force, dust charge fluctuation, and radiative effects of electrons and ions. The analytical discussion of general dispersion relation is presented in parallel and perpendicular mode of propagation. The Routh Hurwitz criterion is applied to analyze the stability of the considered system. We report the existence of a modified cyclotron mode in parallel propagation and a purely collisional mode in perpendicular propagation along with the gravitational mode. These modes are discussed analytically, as well as numerically, to show the importance of different parameters considering different situations. The implications of the result have been discussed for the molecular clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. I. Popel, V. N. Tsytovich, and M. Y. Yu, Astrophys. Space Sci. 256, 1 (1998).

    Google Scholar 

  2. S. I. Popel and V. N. Tsytovich, Astrophys. Space Sci. 264, 219 (1999).

    Article  ADS  Google Scholar 

  3. K. Avinash, B. Eliasson, and P. K. Shukla, Phys. Lett. A 353, 105 (2006).

    Article  ADS  Google Scholar 

  4. V. N. Tsytovich, Phys. Usp. 58, 150 (2015).

    Article  ADS  Google Scholar 

  5. C. B. Dwivedi, Phys. Scr. 53, 760 (1996).

    Article  ADS  Google Scholar 

  6. V. N. Tsytovich, Phys. Usp. 40, 53 (1997).

    Article  ADS  Google Scholar 

  7. P. K. Shukla and L. Stenflo, Proc. R. Soc. A 462, 403 (2006)

    Article  ADS  Google Scholar 

  8. R. Bingham and V. N. Tsytovich, Astron. Astrophys. 376, L43 (2001).

    Article  ADS  Google Scholar 

  9. S. Ali and P. K. Shukla, Phys. Scr. 73, 359 (2006).

    Article  ADS  Google Scholar 

  10. S. Jain and P. Sharma, Phys. Plasmas 23, 093701 (2016).

    Article  ADS  Google Scholar 

  11. P. Sharma, Astrophys. Space Sci. 361, 114 (2016).

    Article  ADS  Google Scholar 

  12. N. L. Tsintsadze, R. Chaudhary, H. A. Shah, and G. Murtaza, J. Plasma Phys. 74, 847 (2008).

    Article  ADS  Google Scholar 

  13. B. Roy and S. Mukherjee, Int. J. Nonlin. Sci. 23, 67 (2017).

    Google Scholar 

  14. S. I. Popel, A. A. Gisko, A. P. Golub’, T. V. Losseva, R. Bingham, and P. K. Shukla, Phys. Plasmas 7, 6 (2000).

    Article  Google Scholar 

  15. V. N. Tsytovich and U. de Angelis, Phys. Plasmas 6, 4 (1999).

    Google Scholar 

  16. V. N. Tsytovich, G. E. Morfill, and H. Thomas, Plasma Phys. Rep. 28, 8 (2002).

    Google Scholar 

  17. S. I. Popel, M. Y. Yu, and V. N. Tsytovich, Phys. Plasmas 3, 12 (1996).

    Article  Google Scholar 

  18. R. P. Prajapati and S. Bhakta, Phys. Lett. A 379, 42 (2015).

    Article  Google Scholar 

  19. V. N. Tsytovich and U. de Angelis, Phys. Plasmas 9, 6 (2002)

    Google Scholar 

  20. G. E. Morfill, V. N. Tsytovich, and H. Thomas, Plasma Phys. Rep. 29, 1 (2003)

    Article  ADS  Google Scholar 

  21. S. A. Khrapak, A. V. Ivlev, V. V. Yaroshenko, and G. E. Morfill, Phys. Rev. Lett. 102, 245004 (2009)

    Article  ADS  Google Scholar 

  22. P. Sharma, Eur. Phys. Lett. 107, 15001 (2014)

    Article  ADS  Google Scholar 

  23. S. Pervin, S. S. Duha, M. Asaduzzamanand, and A. A. Mamun, J. Plasma Phys. 79, 1 (2013).

    Article  ADS  Google Scholar 

  24. P. Sharma and S. Jain, Eur. Phys. Lett. 113, 65001 (2016)

    Article  ADS  Google Scholar 

  25. P. Dutta, P. Das, and P. K. Karmakar, Astrophys. Space Sci. 361, 322 (2016).

    Article  ADS  Google Scholar 

  26. M. Shahmansouri and A. A. Mamun, Eur. Phys. J. Plus 131, 321 (2016).

    Article  Google Scholar 

  27. A. Abbasi and M. R. Rashidian Vaziri, Plasma Sci. Technol. 20, 035301 (2018).

    Article  ADS  Google Scholar 

  28. C. F. Gammie, Astrophys. J. 553, 174 (2001).

    Article  ADS  Google Scholar 

  29. D. L. Gilden, Astrophys. J. 283, 679 (1984).

    Article  ADS  Google Scholar 

  30. B. P. Pandey and V. Krishan, IEEE Trans. Plasma Sci. 29, 2 (2001).

    Article  Google Scholar 

  31. P. Sharma and S. Jain, Phys. Scr. 91, 1 (2016).

    Article  Google Scholar 

  32. B. P. Pandey, J. Vranjes, and S. Parhi, Pramana J. Phys. 60, 3 (2003).

    Google Scholar 

  33. M. P. Bora, Phys. Plasmas 11, 523 (2004).

    Article  ADS  Google Scholar 

  34. P. Sharma and A. Patidar, Phys. Plasmas 24, 013705 (2017)

    Article  ADS  Google Scholar 

  35. P. K. Shukla and I. Sandberg, Phys. Rev. E 67, 036401 (2003).

    Article  ADS  Google Scholar 

  36. L. Spitzer, Jr., Physical Processes in the Interstellar Media (Wiley, New York, 1978).

    Google Scholar 

  37. A. Dalgarno and R. A. McCray, Ann. Rev. Astron. Astrophys. 10, 375 (1972).

    Article  ADS  Google Scholar 

  38. S. I. Popel, S. N. Andreev, A. A. Gisko, A. P. Golub, and T. V. Losseva, Plasma Phys. Rep. 30, 284 (2004).

    Article  ADS  Google Scholar 

  39. S. I. Popel, A. P. Golub’, and T. V. Loseva, JETP Lett. 74, 362 (2001)

    Article  ADS  Google Scholar 

  40. S. I. Popel, A. P. Golub’, T. V. Losseva, R. Bingham, and S. Benkadda, Phys. Plasmas 8, 5 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  41. S. I. Popel, A. P. Golub’, T. V. Losseva, A. V. Ivlev, S. A. Khrapak, and G. Morfill, Phys. Rev. E 67, 056402 (2003).

    Article  ADS  Google Scholar 

  42. M. A. Sarwar, A. M. Mirza, and M. S. Qaisar, Phys. Plasmas 14, 073702 (2007).

    Article  ADS  Google Scholar 

  43. F. Verheest, P. K. Shukla, G. Jacobs, and V. V. Yaroshenko, Phys. Rev. E 68, 027402 (2003).

    Article  ADS  Google Scholar 

  44. R. P. Prajapati, S. Bhakta, and R. K. Chhajlani, Phys. Plasmas 23, 053703 (2016).

    Article  ADS  Google Scholar 

Download references

FUNDING

Authors gratefully acknowledge the DST-SERB, New Delhi (SB/FTP/PS-075/2014) and MPSCT, Bhopal (R&D File no. A/RD/RP-2/2015-16/243) for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Patidar, A., Jain, S. et al. Radiative and Gravitational Modes and Instabilities in an Inhomogeneous Magneto Dusty Plasma with Charge Variation. Plasma Phys. Rep. 45, 699–713 (2019). https://doi.org/10.1134/S1063780X19070109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19070109

Navigation