Skip to main content
Log in

Change in the Generation Mode of the Plasma Relativistic Microwave Oscillator

  • PLASMA ELECTRONICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Time evolution of the parameters of output radiation of a plasma relativistic microwave oscillator (PRMO) based on the Sinus 550-80 accelerator during a single relativistic electron beam (REB) pulse was studied experimentally. Analysis of the experimental data was accompanied by numerical simulations under conditions close to the experimental ones. It is shown that qualitative changes in the parameters of the PRMO output radiation are associated with a change in the generation mode. The first half of the REB pulse is characterized by the maximum output radiation power and a broadband spectrum consisting of a great number of harmonics. The nonlinear beam–plasma interaction limits the growth of the field amplitude, decreases the number of plasma electrons, and leads to the emergence of longitudinal plasma inhomogeneity. The appearance of an ion background in the drift tube volume and the formation of a radially nonuniform plasma waveguide alter the conditions of beam–plasma interaction in the second half of the pulse. The second half of the REB pulse is characterized by a decrease in the output microwave power and the narrowing of the generation frequency band. Spectral analysis demonstrates preservation of a stable narrow spectral component throughout the microwave pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. P. S. Strelkov and D. K. Ulyanov, in Proceedings of the International Workshop “Strong Microwaves in Plasmas,” Nizhni Novgorod, 1999, p. 858.

  2. M. V. Kuzelev, O. T. Loza, A. A. Rukhadze, P. S. Strelkov, and A. G. Shkvarunets, Plasma Phys. Rep. 27, 669 (2001).

    Article  ADS  Google Scholar 

  3. I. L. Bogdankevich, I. E. Ivanov, O. T. Loza, P. S. Strelkov, D. K. Ulyanov, and E. Garate, in Proceedings of the XXVIII International Conference on Phenomena in Ionized Gases, Prague, 2007, p. 1194.

  4. P. S. Strelkov and D. K. Ul’yanov, Plasma Phys. Rep. 26, 303 (2000).

    Article  ADS  Google Scholar 

  5. D. K. Ul’yanov, Cand. Sci.(Math.–Phys.) Dissertation (General Physics Institute, Russian Acad. Sci., Moscow, 2000).

  6. I. L. Bogdankevich, I. E. Ivanov, O. T. Loza, A. A. Rukhadze, P. S. Strelkov, V. P. Tarakanov, and D. K. Ul’yanov, Plasma Phys. Rep. 28, 690 (2002).

    Article  ADS  Google Scholar 

  7. I. L. Bogdankevich, D. M. Grishin, A. V. Gunin, I. E. Ivanov, S. D. Korovin, O. T. Loza, G. A. Mesyats, D. A. Pavlov, V. V. Rostov, P. S. Strelkov, and D. K. Ul’yanov, Plasma Phys. Rep. 34, 852 (2008).

    Article  ADS  Google Scholar 

  8. O. T. Loza, A. V. Ponomarev, P. S. Strelkov, D. K. Ul’yanov, and A. G. Shkvarunets, Plasma Phys. Rep. 23, 201 (1997).

    ADS  Google Scholar 

  9. D. K. Ul’yanov and S. E. Andreev, Prikl. Fiz., No. 4, 26 (2014).

  10. I. S. Alekseev, I. E. Ivanov, P. S. Strelkov, V. P. Tarakanov, and D. K. Ul’yanov, Plasma Phys. Rep. 43, 340 (2017).

    Article  ADS  Google Scholar 

  11. M. V. Kuzelev, A. A. Rukhadze, and P. S. Strelkov, Plasma Relativistic Microwave Electronics (Mosk. Gos. Tekhn. Univ. im. N.E. Baumana, Moscow, 2002) [in Russian].

  12. V. P. Tarakanov, User’s Manual for Code KARAT (Berkley Research Associates, Springfield, VA, 1992).

    Google Scholar 

  13. O. T. Loza, J. Comm. Technol. Electron. 54, 844 (2009).

    Article  Google Scholar 

  14. I. L. Bogdankevich, O. T. Loza, and D. A. Pavlov, Bull. Lebedev Phys. Inst. 37, 40 (2010).

    Article  ADS  Google Scholar 

  15. S. E. Ernyleva, I. L. Bogdankevich, and O. T. Loza, Bull. Lebedev Phys. Inst. 40, 178 (2013).

    Article  ADS  Google Scholar 

  16. S. E. Ernyleva and O. T. Loza, Bull. Lebedev Phys. Inst. 41, 43 (2014).

    Article  ADS  Google Scholar 

  17. S. E. Ernyleva and O. T. Loza, Tr. IOF RAN 72, 118 (2016).

    Google Scholar 

  18. J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. V. Kuzelev and A. A. Rukhadze, Basics of Plasma Free Electron Lasers (Nauka, Moscow, 1990; Frontieres, Paris, 1995)

  20. I. L. Bogdankevich, P. Yu. Goncharov, N. G. Gusein-zade, and A. M. Ignatov, Plasma Phys. Rep. 43, 648 (2017).

    Article  ADS  Google Scholar 

  21. M. V. Kuzelev and A. A. Rukhadze, Plasma Phys. Rep. 25, 426 (1999).

    ADS  Google Scholar 

  22. S. E. Andreev, Sist. Sred. Inform. 26 (1), 30 (2016).

    Google Scholar 

Download references

Funding

This work was supported by the Presidium of the Russian Academy of Sciences, Program no. 10 “High-Power Ultrashort Electromagnetic Pulses and Their Interaction with Objects and Media.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Andreev.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, S.E., Bogdankevich, I.L., Gusein-zade, N.G. et al. Change in the Generation Mode of the Plasma Relativistic Microwave Oscillator. Plasma Phys. Rep. 45, 674–684 (2019). https://doi.org/10.1134/S1063780X1907002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1907002X

Navigation