Skip to main content
Log in

Electroacoustic Waves in a Collision-Free Magnetized Superthermal Bi-Ion Plasma

  • NONLINEAR PHENOMENA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The electroacoustic waves, particularly ion-acoustic waves (IAWs), and their expansion in the medium of a magnetized collision-free plasma system has been investigated theoretically. The plasma system is assumed to be composed of both positively and negatively charged mobile ion species and kappa-distributed hot electron species. In the nonlinear perturbation regime, the magnetized Korteweg–de Vries (KdV) and magnetized modified KdV (mKdV) equations are derived by using reductive perturbation method. The prime features (i.e., amplitude, phase speed, width, etc.) of the IAWs are studied precisely by analyzing the stationary solitary wave solutions of the magnetized KdV and magnetized mKdV equations, respectively. It occurs that the basic properties of the IAWs are significantly modified in the presence of the excess superthermal hot electrons, obliqueness, the plasma particle number densities, etc. It is also observed that, in case of magnetized KdV solitary waves, both compressive and rarefactive structures are formed, whereas only compressive structures are found for the magnetized mKdV solitary waves. The implication of our results in some space and laboratory plasma situations is concisely discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. T. Akhter, M. M. Hossain, and A. A. Mamun, Commun. Theor. Phys. 59, 745 (2013).

    Article  ADS  Google Scholar 

  2. D. E. Shemansky and D. T. Hall, J. Geophys. Res. 97, 4143 (1992).

    Article  ADS  Google Scholar 

  3. K. Stasiewics, Phys. Rev. Lett. 12, 125004 (2004).

    Article  ADS  Google Scholar 

  4. R. A. Gottscho and C. E. Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986).

    Article  ADS  Google Scholar 

  5. M. Bacal and G. W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979).

    Article  ADS  Google Scholar 

  6. J. Jacquinot, B. D. McVey, and J. E. Scharer, Phys. Rev. Lett. 39, 88 (1977).

    Article  ADS  Google Scholar 

  7. B. Hultqvist, M. Ieroset, G. Paschmann, and R. Treumann, Magnetospheric Plasma Sources and Losses (Kluwer Academic, Dordrecht, 1999).

    Book  Google Scholar 

  8. H. S. W. Massey, Negative Ions (Cambridge University Press, Cambridge, 1976).

    Google Scholar 

  9. P. H. Chaizy, H. Reme, J. A. Sauvaud, C. D’Uston, R. P. Lin, D. E. Larson, D. L. Mitchell, K. A. Anderson, C. W. Carlson, A. Korth, and D. A. Mendis, Nature 349, 393 (1991).

    Article  ADS  Google Scholar 

  10. M. Shahmansouri and M. Tribeche, Astrophys. Space Sci. 350, 623 (2014).

    Article  ADS  Google Scholar 

  11. M. R. Hossen, L. Nahar, and A. A. Mamun, J. Korean Phys. Soc. 65, 1863 (2014).

    Article  ADS  Google Scholar 

  12. M. R. Hossen, L. Nahar, and A. A. Mamun, Braz. J. Phys. 44, 638 (2014).

    Article  ADS  Google Scholar 

  13. M. R. Hossen, M. A. Hossen, S. Sultana, and A. A. Mamun, Astrophys. Space Sci. 357, 34 (2015).

    Article  ADS  Google Scholar 

  14. M. A. Hossen, M. M. Rahman, M. R. Hossen, and A. A. Mamun, Braz. J. Phys. 45, 444 (2015).

    Article  ADS  Google Scholar 

  15. S. A. Ema, M. Ferdousi, S. Sultana, and A. A. Mamun, Eur. Phys. J. Plus 130, 46 (2015).

    Article  Google Scholar 

  16. M. Y. Yu, P. K. Shukla, and S. Bujarbarua, Phys. Fluids 23, 2146 (1980).

    Article  ADS  Google Scholar 

  17. P.K. Shukla and A. A. Mamun, IEEE Trans. Plasma Sci. 29, 221 (2001).

    Article  ADS  Google Scholar 

  18. A. A. Mamun, M. N. Alam, A. K. Das, Z. Ahmed, and T. K. Datta, Phys. Scr. 58, 72 (1998).

    Article  ADS  Google Scholar 

  19. S. Sultana, I. Kourakis, and M. A. Hellberg, Plasma Phys. Controlled Fusion 54, 105016 (2012).

    Article  ADS  Google Scholar 

  20. S. Sultana, I. Kourakis, N. S. Saini, and M. A. Hellberg, Phys. Plasmas 17, 032310 (2010).

    Article  ADS  Google Scholar 

  21. A. Hasegawa, K. Mima, and M. Duong-van, Phys. Rev. Lett. 54, 2608 (1985).

    Article  ADS  Google Scholar 

  22. S. Preische, P. C. Efthimion, and S. M. Kaye, Phys. Plasmas 3, 4065 (1996).

    Article  ADS  Google Scholar 

  23. C. Vocks, G. Mann, and G. Rausche, Astrophys. Space Sci. 480, 527 (2008).

    Google Scholar 

  24. T. Cattaert, M. A. Helberg, and R. L. Mace, Phys. Plasmas 14, 082111 (2007).

    Article  ADS  Google Scholar 

  25. M. S. Alam, M. M. Masud, and A. A. Mamun, Plasma Phys. Rep. 39, 1011 (2013).

    Article  ADS  Google Scholar 

  26. B. Basu, Phys. Plasmas 15, 042108 (2008).

    Article  ADS  Google Scholar 

  27. T. K. Baluku and M. A. Hellberg, Phys. Plasmas 19, 012106 (2012).

    Article  ADS  Google Scholar 

  28. M. Sarkar, M. R. Hossen, M. G. Shah, B. Hosen, and A. A. Mamun, Z. Naturforsch. A 73, 501 (2018).

    Article  ADS  Google Scholar 

  29. G. C. Das, Phys. Plasmas 19, 363 (1977).

    Article  Google Scholar 

  30. S. K. El-Labany and A. El-Sheikh, Astrophys. Space Sci. 19, 185 (1992).

    Article  ADS  Google Scholar 

  31. A. A. Mamun, Phys. Rev. E 55, 1852 (1997).

    Article  ADS  Google Scholar 

  32. W. F. El-Taibany and I. Kourakis, Phys. Plasmas 13, 062302 (2006).

    Article  ADS  Google Scholar 

  33. E. K. El-Shewy, S. A. El-Wakil, A. M. El-Hanbaly, M. Sallah, and H. F. Darweesh, Astrophys. Space Sci. 356, 269 (2015).

    Article  ADS  Google Scholar 

  34. M. G. Shah, M. M. Rahman, M. R. Hossen, and A. A. Mamun, Commun. Theor. Phys. 64, 208 (2015).

    Article  ADS  Google Scholar 

  35. M. G. Shah, M. M. Rahman, M. R. Hossen, and A. A. Mamun, Plasma Phys. Rep. 42, 168 (2016).

    Article  ADS  Google Scholar 

  36. I. Hadjaz and M. Tribeche, Astrophys. Space Sci. 351, 591 (2014).

    Article  ADS  Google Scholar 

  37. R. A. Cairns, A. A. Mamun, R. Bingham, R. Bostrom, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  38. H. Schamel and S. Bujarbarua, Phys. Fluids 23, 2498 (1980).

    Article  ADS  Google Scholar 

  39. K. Nishihara and M. Tajiri, J. Phys. Soc. Jpn. 50, 4047 (1981).

    Article  ADS  Google Scholar 

  40. T. Akhter, M. M. Hossain, and A. A. Mamun, Plasma Phys. B 22, 075201 (2013).

    ADS  Google Scholar 

  41. A. A. Mamun and N. Jahan, Europhys. Lett. 84, 35001 (2008).

    Article  ADS  Google Scholar 

  42. C. R. Choi, K. W. Min, M. H. Woo, and C. M. Ryu, Phys. Plasmas 17, 092904 (2010).

    Article  ADS  Google Scholar 

  43. A. A. Mamun and S. Tasnim, Phys. Plasmas 17, 073704 (2010).

    Article  ADS  Google Scholar 

  44. M. Hasan, M. M. Hossain, and A. A. Mamun, Astrophys. Space Sci. 345, 113 (2013).

    Article  ADS  Google Scholar 

  45. T. Akhter, M. M. Hossain, and A. A. Mamun, Astrophys. Space Sci. 345, 283 (2013).

    Article  ADS  Google Scholar 

  46. A. A. Mamun, P. K. Shukla, and B. Eliasson, Phys. Rev. E 80, 046406 (2009).

    Article  ADS  Google Scholar 

  47. F. Sayed, M. M. Haider, A. A. Mamun, P. K. Shukla, B. Eliasson, and N. Adhikary, Phys. Plasmas 15, 063701 (2008).

    Article  ADS  Google Scholar 

  48. M. M. Haider, S. Akter, S. S. Duha, and A. A. Mamun, Cent. Eur. J. Phys. 10, 1168 (2012).

  49. M. M. Haider and A. A. Mamun, Phys. Plasmas 19, 102105 (2012).

    Article  ADS  Google Scholar 

  50. B. Hosen, M. G. Shah, M. R. Hossen, and A. A. Mamun, Eur. Phys. J. Plus 131, 81 (2016).

    Article  Google Scholar 

  51. B. Hosen, M. Amina, A. A. Mamun, and M. R. Hossen, J. Korean Phys. Soc. 69, 1762 (2016).

    Article  ADS  Google Scholar 

  52. S. Sultana and A. A. Mamun, Astrophys. Space Sci. 349, 229 (2014).

    Article  ADS  Google Scholar 

  53. M. S. Alam, M. M. Masud, and A. A. Mamun, Astrophys. Space Sci. 349, 245 (2014).

    Article  ADS  Google Scholar 

  54. M. J. Uddin, M. S. Alam, and A. A. Mamun, Commun. Theor. Phys. 63, 754 (2015).

    Article  ADS  Google Scholar 

  55. A. E. Dubinov, Phys. Scr. 80, 035504 (2009).

    Article  ADS  Google Scholar 

  56. A. E. Dubinov, Plasma Phys. Rep. 35, 991 (2009).

    Article  ADS  Google Scholar 

  57. S. I. Popel and M. Y. Yu, Contrib. Plasma Phys. 35, 103 (1995).

    Article  ADS  Google Scholar 

  58. T. V. Losseva, S. I. Popel, A. P. Golub, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).

    Article  ADS  Google Scholar 

  59. T. V. Losseva, S. I. Popel, and A. P. Golub, Plasma Phys. Rep. 38, 729 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

M. Sarker is profoundly grateful to the Ministry of Science and Technology (Bangladesh) for awarding the National Science and Technology (NST) fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sarker.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, M., Hossen, M.R., Shah, M.G. et al. Electroacoustic Waves in a Collision-Free Magnetized Superthermal Bi-Ion Plasma. Plasma Phys. Rep. 45, 481–491 (2019). https://doi.org/10.1134/S1063780X19050118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19050118

Navigation