Skip to main content
Log in

Physico-Chemical Investigation of Pulsed Discharge in CO2/O2 Gas Mixture

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

In this research, the decomposition of CO2 in CO2/O2 pulsed discharge was studied. The developed model is based on the physical processes involved in the discharge with the CO2 plasma chemistry, the electrical circuit, and the Boltzmann equations. The fundamental chemistry of CO2/O2 gas mixture used in this work is based on a full set of processes regrouped in 113 reactions involving 21 species of the discharge. The obtained numerical results show the temporal variations of electrical parameters and species concentrations of the discharge. We have also studied the effect of some discharge parameters (gas pressure, dielectric capacitance, applied voltage, concentration of O2 in CO2/O2 gas mixture, and frequency) on the discharge behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. Aerts, T. Martens, and A. Bogaerts, J. Phys. Chem. C 116, 23257 (2012).

    Article  Google Scholar 

  2. S. Ponduri, M. M. Becker, S. Welzel, M. C. M. van de Sanden, D. Loffhagen, and R. Engeln, J. Appl. Phys. 119, 093301 (2016).

    Article  ADS  Google Scholar 

  3. T. Kozàk and A. Bogaerts, Plasma Sources Sci. Technol. 23, 045004 (2014).

    Article  ADS  Google Scholar 

  4. D. Mei and X. Tu, J. CO2 Utilizat. 19, 68 (2017).

  5. R. Aerts, W. Somers, and A. Bogaerts, Chem. Sus. Chem. 8, 702 (2015).

    Article  Google Scholar 

  6. F. Brehmer, S. Wetzel, M. C. M. Van de Sanden, and R. Engeln, J. Appl. Phys. 116, 123303 (2014).

    Article  ADS  Google Scholar 

  7. M. Ramakers, I. Michielsen, R. Aerts, V. Meynen, and A. Bogaerts, Plasma Process. Polym. 12, 755 (2015).

    Article  Google Scholar 

  8. R. Snoeckx, S. Heijkers, K. Van Wesenbeeck, S. Lenaerts, and A. Bogaerts, Energy Environ. Sci. 9, 999 (2016).

    Article  Google Scholar 

  9. A. Ozkan, T. Dufour, A. Bogaerts, and F. Reniers, Plasma Sources Sci. Technol. 25, 045016 (2016).

    Article  ADS  Google Scholar 

  10. M. S. Moss, K. Yanallah, R. W. K. Allen, and F. Pontiga, Plasma Sources Sci. Technol. 26, 035009 (2017).

    Article  ADS  Google Scholar 

  11. G. Horvath, J. D. Skalny, and N. J. Mason, J. Phys. D 41, 225207 (2008).

    Article  ADS  Google Scholar 

  12. W. W. Xu, L. Ming-Wei, X. Gen-Hui, and T. Yi-Ling, Jpn. J. Appl. Phys. 43, 8310 (2004).

    Article  ADS  Google Scholar 

  13. T. Kozàk and A. Bogaerts, Plasma Sources Sci. Technol. 24, 015024 (2015).

    Article  ADS  Google Scholar 

  14. T. Silva, N. Britun, T. Godfroid, and R. Snyders, Plasma Sources Sci. Technol. 23, 025009 (2014).

    Article  ADS  Google Scholar 

  15. H. Hokazono and H. Fujimoto, J. Appl. Phys. 62, 1585 (1987).

    Article  ADS  Google Scholar 

  16. A. Cenian, A. Chernukho, V. Borodin, and G. Sliwinski, Contrib. Plasma Phys. 34, 25 (1994).

    Article  ADS  Google Scholar 

  17. W. Wang, A. Berthelot, S. Kolev, X. Tu, and A. Bogaerts, Plasma Sources Sci. Technol. 25, 065012 (2016).

    Article  ADS  Google Scholar 

  18. W. Wang, D. Mei, X. Tu, and A. Bogaerts, Chem. Eng. J. 330, 11 (2017).

    Article  Google Scholar 

  19. L. D. Pietanza, G. Colonna, G. D. Ammando, A. Laricchiuta, and M. Capitelli, Plasma Sources Sci. Technol. 24, 042002 (2015).

    Article  ADS  Google Scholar 

  20. S. Paulussen, B. Verheyde, X. Tu, C. De Bie, T. Martens, D. Petrovic, A. Bogaerts, and B. Sels, Plasma Sources Sci. Technol. 19, 034015 (2010).

    Article  ADS  Google Scholar 

  21. Q. Yu, M. Kong, T. Liu, J. Fei, and X. Zheng, Plasma Chem. Plasma Process. 32, 153 (2012).

    Article  Google Scholar 

  22. A. Ozkan, T. Dufour, G. Arnoult, P. DeKeyzer, A. Bogaerts, and F. Reniers, J. CO2 Utilizat. 9, 74 (2015).

  23. M. SooBak, S. KyunIm, and M. Cappelli, IEEE Trans. Plasma Sci. 43, 1002 (2015).

  24. A. Bogaerts, T. Kozak, K. Van Laer, and R. Snoeckx, Faraday Discuss. 183, 217 (2015).

    Article  ADS  Google Scholar 

  25. A. Ozkan, T. Dufour, T. Silva, N. Britun, R. Snyders, A. Bogaerts, and F. Reniers, Plasma Sources Sci. Technol. 25, 025013 (2016).

    Article  Google Scholar 

  26. A. Berthelot and A. Bogaerts, Plasma Sources Sci. Technol. 25, 045022 (2016).

    Article  ADS  Google Scholar 

  27. O. Taylan and H. Berberoglu, Plasma Sources Sci. Technol. 24, 015006 (2015).

    Article  ADS  Google Scholar 

  28. T. Mikoviny, M. Kocan, S. Matejcik, N. J. Mason, and J. D. Skalny, J. Phys. D 37, 64 (2004).

    Article  ADS  Google Scholar 

  29. T. Mikoviny, J. D. Skalny, J. Orszagh, and N. J. Mason, J. Phys. D 40, 6646 (2007).

    Article  ADS  Google Scholar 

  30. M. Benyamina, A. Belasri, and K. Khodja, Ozone Sci. Eng. 36, 253 (2014).

    Article  Google Scholar 

  31. A. Belasri, N. Larbi Daho Bachir, and Z. Harrache, Plasma Chem. Plasma Process. 33, 131 (2013).

    Article  Google Scholar 

  32. A. Belasri and Z. Harrache, Phys. Plasmas 17, 123501 (2010).

    Article  ADS  Google Scholar 

  33. C. W. Gear, Numerical Initial Value Problem in Ordinary Differential Equations (Prentice-Hall, Enlewood Cliffs, NJ, 1971).

    MATH  Google Scholar 

  34. https://www.bolsig.laplace.univ-tlse.fr/.

  35. T. G. Beuthe and J. S. Chang, Jpn. J. Appl. Phys. 36, 4997 (1997).

    Article  ADS  Google Scholar 

  36. B. Mennad, Z. Harrache, D. Amir Aid, and A. Belasri, Current Appl. Phys. 10, 1391 (2010).

    Article  ADS  Google Scholar 

  37. J. T. Gudmundsson and E. G. Thorsteinsson, Plasma Sources Sci. Technol. 16, 399 (2007).

    Article  ADS  Google Scholar 

  38. J. T. Gudmundsson, Technical Report No. RH-21-2002 (Science Institute, University of Iceland, 2002).

  39. C. Lee, D. B. Graves, M. A. Lieberman, and D. W. Hess, J. Electrochem. Soc. 141, 1546 (1994).

    Article  ADS  Google Scholar 

  40. H. Hokazono, M. Obara, K. Midorikawa, and H. Tashiro, J. Appl. Phys. 69, 6850 (1991).

    Article  ADS  Google Scholar 

  41. O. V. Braginskiy, A. N. Vasilieva, K. S. Klopovskiy, A. S. Kovalev, D. V. Lopaev, O. V. Proshina, T. V. Rakhimova, and A. T. Rakhimov, J. Phys. D 38, 3609 (2005).

    Article  ADS  Google Scholar 

  42. A. M. Starik, B. I. Loukhovitski, and A. P. Chernukho, Plasma Sources Sci. Technol. 21, 035015 (2012).

    Article  ADS  Google Scholar 

  43. N. L. Aleksandrov, Sov. Phys. Tech. Phys. 23, 806 (1978).

    ADS  Google Scholar 

  44. A. Cenian, A. Chernukho, and V. Borodin, Contrib. Plasma Phys. 35, 273 (1995).

    Article  ADS  Google Scholar 

  45. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  46. J. Woodall, M. Agundez, A. J. Markwick-Kemper, and T. J. Millar, Astron. Astrophys. 466, 1197 (2007).

    Article  ADS  Google Scholar 

  47. A. A. Ionin, I. V. Kochetov, A. P. Napartovich, and N. N. Yuryshev, J. Phys. D 40, R25 (2007).

    Article  ADS  Google Scholar 

  48. S. I. Kozlov, V. A. Vlaskov, and N. V. Smirnova, Kosm. Issled. 26, 738 (1988).

    ADS  Google Scholar 

  49. B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D 20, 1421 (1987).

    Article  ADS  Google Scholar 

  50. A. V. Vasenkov, X. Li, G. S. Oehrlein, and M. J. Kushner, J. Vac. Sci. Technol. A 22, 511 (2004).

    Article  ADS  Google Scholar 

  51. J. Zinn, C. D. Sutherland, S. N. Stone, and L. M. Duncan, J. Atmos. Terr. Phys. 44, 1143 (1982).

    Article  ADS  Google Scholar 

  52. Defense Nuclear Agency Reaction Rate Handbook (DNA Report No. 1948H-REV-8), Ed. by M. H. Bortner and T. Baurer (General Electric Tempo Center, Santa Barbara, CA, 1978), Ch. 24.

    Google Scholar 

  53. J. W. Dettmer, PhD Thesis (Air Force Institute of Technology, Dayton, OH, 1978).

  54. B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, IEEE Trans. Plasma Sci. 23, 750 (1995).

    Article  ADS  Google Scholar 

  55. L. E. Khvorostovskaya, Contrib. Plasma Phys. 31, 71 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Harrache.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidia, L., Belasri, A., Baadj, S. et al. Physico-Chemical Investigation of Pulsed Discharge in CO2/O2 Gas Mixture. Plasma Phys. Rep. 45, 501–516 (2019). https://doi.org/10.1134/S1063780X1905009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1905009X

Navigation