Skip to main content
Log in

Dust Ion Acoustic Solitary Structures at the Acoustic Speed in the Presence of Nonthermal Electrons and Isothermal Positrons

  • NONLINEAR PHENOMENA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The Sagdeev pseudo-potential technique and the analytic theory developed by Das et al. [J. Plasma Phys.78, 565 (2012)] have been used to investigate the dust ion acoustic solitary structures at the acoustic speed in a collisionless unmagnetized dusty plasma consisting of negatively charged static dust grains, adiabatic warm ions, nonthermal electrons, and isothermal positrons. The present system supports both positive and negative potential solitary waves at the acoustic speed, but the system does not support the coexistence of solitary structures of opposite polarity at the acoustic speed. The system also supports negative potential double layer at the acoustic speed, but does not support positive potential double layer. Although the system supports positive potential supersoliton at the supersonic speed, but there does not exist supersoliton of any polarity at the acoustic speed. Solitary structures have been investigated with the help of compositional parameter spaces and the phase portraits of the dynamical system describing the nonlinear behavior of the dust ion acoustic waves at the acoustic speed. For the case, when there is no positron in the system, there exist negative potential double layer and negative potential supersoliton at the acoustic speed, and, for such case, the mechanism of transition of supersoliton to soliton after the formation of double layer at the acoustic speed has been discussed with the help of phase portraits. The differences between the solitary structures at the acoustic speed and the solitary structures at the supersonic speed have been analyzed with the help of phase portraits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. P. K. Shukla and M. Marklund, Phys. Scr. T113, 36 (2004).

    ADS  Google Scholar 

  2. I. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics, Vol. 2: The Structure and Evolution of the Universe (University of Chicago Press, Chicago, 1971).

  3. W. H. Zurek, Astrophys. J. 289, 603 (1985).

    Article  ADS  Google Scholar 

  4. J. C. Higdon, R. E. Lingenfelter, and R. E. Rothschild, Astrophys. J. 698, 350 (2009).

    Article  ADS  Google Scholar 

  5. P. K. Shukla, Phys. Scr. 77, 068201 (2008).

    Article  ADS  Google Scholar 

  6. A. E. Dubinov, D. Y. Kolotkov, and M. A. Sazonkin, Tech. Phys. 57, 585 (2012).

    Article  Google Scholar 

  7. H. Alfvén, Cosmic Plasma (Reidel, Dordrecht, 1981).

    Book  MATH  Google Scholar 

  8. A. A. Gusev, U. B. Jayanthi, I. M. Martin, G. I. Pugacheva, and W. N. Spjeldik, Braz. J. Phys. 30, 590 (2000).

    Article  ADS  Google Scholar 

  9. A. A. Gusev, U. B. Jayanthi, I. M. Martin, G. I. Pugacheva, and W. N. Spjeldvik, J. Geophys. Res. 106, 26111 (2001).

    Article  ADS  Google Scholar 

  10. R. L. Merlino, Plasma Phys. Appl. 81, 73 (2006).

    Google Scholar 

  11. M. Horányi, T. Hartquist, O. Havnes, D. Mendis, and G. Morfill, Rev. Geophys. 42, 1 (2004).

    Article  Google Scholar 

  12. S. Ghosh and R. Bharuthram, Astrophys. Space Sci. 314, 121 (2008).

    Article  ADS  Google Scholar 

  13. S. A. El-Tantawy, N. A. El-Bedwehy, and W. M. Moslem, Phys. Plasmas 18, 052113 (2011).

    Article  ADS  Google Scholar 

  14. S. A. El-Tantawy and W. M. Moslem, Phys. Plasmas 18, 112105 (2011).

    Article  ADS  Google Scholar 

  15. N. S. Saini, B. S. Chahal, and A. S. Bains, Astrophys. Space Sci. 347, 129 (2013).

    Article  ADS  Google Scholar 

  16. G. Banerjee and S. Maitra, Phys. Plasmas 23, 123701 (2016).

    Article  ADS  Google Scholar 

  17. A. Paul, A. Das, and A. Bandyopadhyay, Plasma Phys. Rep. 43, 218 (2017).

    Article  ADS  Google Scholar 

  18. A. Paul and A. Bandyopadhyay, Astrophys. Space Sci. 361, 172 (2016).

    Article  ADS  Google Scholar 

  19. R. A. Cairns, A. A. Mamun, R. Bingham, R. O. Dendy, R. Boström, P. K. Shukla, and C. M. C. Nairn, Geophys. Res. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  20. A. Paul, A. Bandyopadhyay, and K. P. Das, Phys. Plasmas 24, 013707 (2017).

    Article  ADS  Google Scholar 

  21. T. K. Baluku, M. A. Hellberg, I. Kourakis, and N. S. Saini, Phys. Plasmas 17, 053702 (2010).

    Article  ADS  Google Scholar 

  22. T. K. Baluku, M. A. Hellberg, and F. Verheest, Europhys. Lett. 91, 15001 (2010).

    Article  ADS  Google Scholar 

  23. F. Verheest and M. A. Hellberg, Phys. Plasmas 17, 023701 (2010).

    Article  ADS  Google Scholar 

  24. A. Das, A. Bandyopadhyay, and K. P. Das, J. Plasma Phys. 78, 565 (2012).

    Article  ADS  Google Scholar 

  25. A. Das, A. Bandyopadhyay, and K. P. Das, arXiv Preprint No. 1110.5307 (2011). https://arxiv.org/pdf/1110.5307v2.pdf.

  26. F. Verheest and M. A. Hellberg, Phys. Plasmas 22, 012301 (2015).

    Article  ADS  Google Scholar 

  27. F. Verheest and S. R. Pillay, Phys. Plasmas 15, 013703 (2008).

    Article  ADS  Google Scholar 

  28. A. E. Dubinov, Plasma Phys. Rep. 35, 991 (2009).

    Article  ADS  Google Scholar 

  29. R. Z. Sagdeev, Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 23.

    Google Scholar 

  30. A. Das, A. Bandyopadhyay, and K. P. Das, Phys. Plasmas 16, 073703 (2009).

    Article  ADS  Google Scholar 

  31. A. Das, A. Bandyopadhyay, and K. P. Das, J. Plasma Phys. 78, 149 (2012).

    Article  ADS  Google Scholar 

  32. A. E. Dubinov and D. Y. Kolotkov, Plasma Phys. Rep. 38, 909 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewer for his constructive comments for the improvement of this paper.

Funding

One of the authors (Ashesh Paul) is thankful to the Department of Science and Technology, Govt. of India, INSPIRE Fellowship Scheme, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Paul or A. Bandyopadhyay.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A., Bandyopadhyay, A. & Das, K.P. Dust Ion Acoustic Solitary Structures at the Acoustic Speed in the Presence of Nonthermal Electrons and Isothermal Positrons. Plasma Phys. Rep. 45, 466–480 (2019). https://doi.org/10.1134/S1063780X19050088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19050088

Navigation