Skip to main content
Log in

Experimental Dependence of the Neutron Yield on the Discharge Current for Plasma Focus Chambers Filled with Deuterium and Deuterium–Tritium

  • PLASMA RADIATION
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results of measurement of the mean neutron yield from plasma focus (PF) chambers filled with deuterium and deuterium–tritium are compared for various Mather-type and spherical PF devices at discharge currents in the range of 200−1000 kA. On the basis of the experimental results, an expression for the ratio of the neutron yields \({{\xi }_{{{\text{exp}}}}} = \left\langle {{{Y}_{{{\text{DT}}}}}} \right\rangle {\text{/}}\left\langle {{{Y}_{{\text{D}}}}} \right\rangle \) in the D + T and D + D reactions as a function of the discharge current is derived, according to which ξexp decreases from 150 to 110 (by ≈1.4 times) as the PF discharge current increases from 200 to 1000 kA. Assuming the beam–target mechanism of neutron generation in the PF, the ratio ξexp for D + T and D + D reactions is compared with the ratio σDTDD of the cross sections for the corresponding nuclear reactions at different mean energies of accelerated ions. Taking into account the mean energies of accelerated ions (~50–70 keV) determined from the measured space–energy anisotropy of neutron emission, it is suggested that the mean effective energy of accelerated D+ and T+ ions in the plasma beam formed in the pinch decay stage increases with increasing PF discharge current, which leads to a decrease in the ratio \({{\xi }_{{{\text{exp}}}}} = \left\langle {{{Y}_{{{\text{DT}}}}}} \right\rangle {\text{/}}\left\langle {{{Y}_{{\text{D}}}}} \right\rangle \) with increasing current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. Soto, C. Pavez, J. Moreno, J. Pedreros, and L. Altamirano, J. Phys. Conf. Ser. 511, 012032 (2014).

    Article  Google Scholar 

  2. A. Tarifeno-Saldivia and L. Soto, J. Phys. Conf. Ser. 511, 012029 (2014).

    Article  Google Scholar 

  3. N. V. Zav’yalov, V. V. Maslov, V. G. Rumyantsev, I. Yu. Drozdov, D. A. Ershov, D. S. Korkin, D. A. Molodtsev, V. I. Smerdov, A. P. Falin, and A. A. Yukhimchuk, Plasma Phys. Rep. 39, 243 (2013).

    Article  ADS  Google Scholar 

  4. B. D. Lemeshko, Yu. V. Mikhailov, I. A. Prokuratov, A. N. Selifanov, T. S. Fatiev, and V. G. Andreev, Matter Radiat. Extrem. 2, 301 (2017).

    Article  Google Scholar 

  5. S. H. Saw and S. Lee, Energy Power Eng. 2, 65 (2010).

    Article  Google Scholar 

  6. M. J. Sadowski and M. Sholz, Nukleonika 1, 31 (2002).

    Google Scholar 

  7. V. V. Maslov, V. G. Rumyantsev, V. F. Basmanov, D. V. Budnikov, A. V. Garni, I. Yu. Drozdov, D. A. Ershov, D. S. Korkin, N. G. Makeev, D. A. Molodtsev, N. I. Moskvin, S. T. Nazarenko, O. N. Petrushin, A. P. Falin, and V. A. Yukhnevich, Instrum. Exp. Tech. 57, 131 (2014).

    Article  Google Scholar 

  8. www.vniia.ru/eng/production/neitronnie-generatory/izmerenie-potoka-neitronov/tpivn61-tpivn111/tpivn61-i-tpivn111.php.

  9. G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra, Nucl. Phys. A 729, 3 (2003).

    Article  ADS  Google Scholar 

  10. S. Lee, Appl. Phys. Lett. 95, 151503 (2009).

    Article  ADS  Google Scholar 

  11. Y. Akgun, A. S. Bolukdemir, E. Kurt, T. Oncu, and A. Alacakir, Plasma Dev. Oper. 17, 292 (2009).

    Article  Google Scholar 

  12. M. Milanese, R. Moroso, and J. Pouzo, Eur. Phys. J. 27, 77 (2003).

    ADS  Google Scholar 

  13. R. Verma, R. S. Rawat, P. Lee, S. V. Springham, T. L. Tan, and M. Krishnan, J. Phys. D 42, 235203 (2009).

    Article  ADS  Google Scholar 

  14. S. Lee, T. Y. Tou, S. P. Moo, M. A. Eissa, A. V. Gholap, K. H. Kwek, S. Mulyodrono, A. J. Smith, Suryadi, W. Usada, and M. Zakaullah, Am. J. Phys. 56, 62 (1988).

    Article  ADS  Google Scholar 

  15. S. R. Moghadam and F. A. Davani, Rev. Sci. Instrum. 81, 073301 (2010).

    Article  ADS  Google Scholar 

  16. J. Moreno, F. Veloso, C. Pavez, A. Tarifeno-Saldivia, D. Klir, and L. Soto, Plasma Phys. Controlled Fusion 57, 035008 (2015).

    Article  ADS  Google Scholar 

  17. H.-J. Woo, K.-S. Chung, and M.-J. Lee, Plasma Phys. Controlled Fusion 46, 1095 (2004).

    Article  ADS  Google Scholar 

  18. M. Zakaullah, A. Waheed, S. Ahmad, S. Zeb, and S. Hussain, Plasma Sources Sci. Technol. 12, 443 (2003).

    Article  ADS  Google Scholar 

  19. F. Karami, M. V. Roshan, M. Habibi, R. Asadnejad, P. Lee, S. H. Saw, and S. Lee, IEEE Trans. Plasma Sci. 43, 2155 (2015).

    Article  ADS  Google Scholar 

  20. M. S. Rafique, PhD Thesis (National Institute of Education Nanyang Technological University, Nanyang, 2000).

  21. A. E. Dubinov and L. A. Senilov, Studies at Plasma Focus Devices in Developing Countries (RFYaTs-VNIIEF, Sarov, 2013) [in Russian].

  22. R. Baghdadi, R. Amrollahi, M. Habibi, and G. R. Etaati, J. Fusion Energy 30, 72 (2011).

    Article  ADS  Google Scholar 

  23. M. V. Roshan, R. S. Rawat, A. Talebitaher, P. Lee, and S. V. Springham, Phys. Plasmas 16, 053301 (2009).

    Article  ADS  Google Scholar 

  24. Zh. G. Guo and M. Han, in Proceedings of the 13th International Conference on High-Power Particle Beams, Nagaoka, 2000, Paper PA-071.

  25. F. Castillo, J. J. E. Herrera, J. Rangel, M. Milanese, R. Moroso, J. Pouzo, J. I. Golzarri, and G. Espinosa, Plasma Phys. Controlled Fusion 45, 289 (2003).

    Article  ADS  Google Scholar 

  26. A. Singh, S. Lee, and S. H. Saw, Int. J. Mod. Phys. Conf. Ser. 32, 1460325 (2014).

    Article  Google Scholar 

  27. M.-F. Lu, T.-C. Yang, M. Han, and S.-Z. Yang, in Proceedings of the 11th International Conference on High-Power Particle Beams, Prague, 1996, Vol. 2, p. 578.

  28. H. Bruzzone, H. Acuna, and A. Clausse, Braz. J. Phys. 38, 117 (2008).

    Article  ADS  Google Scholar 

  29. V. E. Ablesimov, Yu. N. Dolin, O. V. Pashko, and Z. S. Tsibikov, Plasma Phys. Rep. 36, 403 (2010).

    Article  ADS  Google Scholar 

  30. C. S. Kueny, D. G. Flicker, and D. V. Rose, SNL Report No. SAND2009-6373 (Sandia National Laboratories, Albuquerque, NM, 2009).

  31. S. T. Ong, K. Chaudhary, J. Ali, and S. Lee, Plasma Phys. Controlled Fusion 56, 075001 (2014).

    Article  ADS  Google Scholar 

  32. M. A. Mohammadi, S. Sobhanian, and R. S. Rawat, Phys. Lett. A 375, 3002 (2011).

    Article  ADS  Google Scholar 

  33. S. Sobhanian, M. A. Mohammadi, M. Golalikhani, M. Moslehi-Fard, and S. Khorram, Publ. Astron. Obs. Belgrade 89, 359 (2010).

    ADS  Google Scholar 

  34. A. R. Babazadeh, M. V. Roshan, H. Habibi, A. Nasiry, M. Memarzadeh, A. Banoushi, M. Lamehi, and S. M. Sadat Kiai, Braz. J. Phys. 32, 89 (2002).

    Article  ADS  Google Scholar 

  35. E. J. Lerner, S. M. Hassan, I. Karamitsos, and F. von Roessel, Phys. Plasmas 24, 102708 (2017).

    Article  ADS  Google Scholar 

  36. A. Link, C. Halvorson, E. C. Hagen, D. V. Rose, D. R. Welch, and A. Schmidt, AIP Conf. Proc. 1639, 23 (2014).

    Article  ADS  Google Scholar 

  37. J. Zebrowski, M. J. Sadowski, K. Czaus, M. Paduch, and K. Tomaszewski, Czech. J. Phys. 54, 643 (2004).

    Article  ADS  Google Scholar 

  38. L. Soto, C. Pavez, J. Moreno, M. Cardenas, A. Tarifeno, P. Silva, M. Zambra, L. Huerta, C. Tenreiro, J. L. Giordano, M. Lagos, C. Retamal, R. Escobar, J. Ramos, and L. Altamirano, Phys. Scr. T131, 013031 (2008).

    Google Scholar 

  39. H. Schmidt, in Proceedings of the Joint ICTP−IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics, Trieste, 2010, Paper 2168-4.

  40. T. Craciunescu, M. Curuia, M. Gherendi, S. Jednorog, M. Paduch, R. Prokopowicz, M. Scholz, S. Soare, and V. Zoita, Roman. Rep. Phys. 67, 1061 (2015).

    Google Scholar 

  41. M. Scholz, B. Bieńkowska, I. M. Ivanova-Stanik, L. Karpiński, A. Kasperczuk, R. Miklaszewski, M. Paduch, T. Pisarczyk, K. Tomaszewski, E. Zielińska, J. Kravarik, P. Kubes, A. Banaszak, L. Jakubowski, M. Sadowski, et al., Vacuum 76, 361 (2004).

    Article  ADS  Google Scholar 

  42. D. A. Andreev, A. K. Dulatov, B. D. Lemeshko, Yu. V. Mikhailov, I. A. Prokuratov, and A. N. Selifanov, RF Patent No. 141449; application No. 2014108096 (2014).

  43. H. R. Yousefi, S. R. Mohanty, Y. Nakada, H. Ito, and K. Masugata, Phys. Plasmas 13, 114506 (2006).

    Article  ADS  Google Scholar 

  44. D. D. Ryutov, M. S. Derzon, and M. K. Matzen, SNL Report No. SAND98-1632 (Sandia National Laboratories, Albuquerque, NM, 1998).

  45. M. S. Rafique, P. Lee, A. Patran, R. S. Rawat, and S. Lee, J. Fusion Energy 29, 295 (2010).

    Article  ADS  Google Scholar 

  46. Plasma Accelerators, Ed. by L. A. Artsimovich, S. D. Grishin, G. L. Grozdovskii, L. V. Leskov, A. I. Morozov, A. M. Dorodnov, V. G. Padalka, and M. I. Pergament (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  47. R. L. Gullickson and R. H. Barlett, X-ray Analysis for Electron Beam Enhancement in the Plasma Focus Device (Lawrence Livermore Laboratory, Livermore, CA, 1974).

    Book  Google Scholar 

  48. G. I. Kir’yanov, Fast Neutron Generators (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  49. L. Blumberg and S. I. Schlesinger, AEC Report No. AECU-3118 (United States Atomic Energy Commission, Office of Technical Services, Washington, DC, 1956).

  50. B. D. Lemeshko, Yu. V. Mikhailov, and I. A. Prokuratov, Plasma Phys. Technol. Abstr., No. 1, 30 (2018).

  51. B. D. Lemeshko, Yu. V. Mikhailov, and I. A. Prokuratov, VII Scientific−Technical Conference of Young Scientists “VNIIA-2013,” Nizhny Novgorod, 2013, Book of Abstracts, p. 52.

  52. V. Raspa, P. Knoblauch, F. Di Lorenzo, and C. Moreno, Phys. Lett. A 374, 4675 (2010).

    Article  ADS  Google Scholar 

  53. P. Knoblauch, V. Raspa, F. Di Lorenzo, A. Clausse, and C. Moreno, Radiat. Phys. Chem. 145, 39 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Mikhailov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, Y.V., Lemeshko, B.D. & Prokuratov, I.A. Experimental Dependence of the Neutron Yield on the Discharge Current for Plasma Focus Chambers Filled with Deuterium and Deuterium–Tritium. Plasma Phys. Rep. 45, 334–344 (2019). https://doi.org/10.1134/S1063780X19030073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19030073

Navigation