Advertisement

Plasma Physics Reports

, Volume 45, Issue 3, pp 264–276 | Cite as

Analytical Model of a Surface Barrier Discharge Development

  • V. R. SolovievEmail author
LOW-TEMPERATURE PLASMA
  • 33 Downloads

Abstract

The propagation of the front of a single surface dielectric barrier microdischarge is studied using an analytical model based on the charge balance equation. The model allows one to find analytical dependences of the discharge propagation velocity and the length of the discharge zone on the parameters of the dielectric barrier and applied voltage pulse. To solve the problem, the results of numerical simulations of the distributions of the electric field, potential, and electron density along the discharge channel are used. The results obtained with the help of the proposed model agree qualitatively with available experimental data.

Notes

ACKNOWLEDGMENTS

I am grateful to G.V. Naidis for useful discussions and acquainting me with works [11, 12]. This work was supported by the Ministry of Education and Science of the Russian Federation, grant no. 3.9279.2017.

REFERENCES

  1. 1.
    T. C. Corke, M. L. Post, and D. M. Orlov, Exp. Fluids 46, 1 (2009).CrossRefGoogle Scholar
  2. 2.
    N. Benard and E. Moreau, Exp. Fluids 55, 1846 (2014).CrossRefGoogle Scholar
  3. 3.
    A. Starikovskiy and N. Aleksandrov, Prog. Energy Combust. Sci. 39, 61 (2013).CrossRefGoogle Scholar
  4. 4.
    S. M. Starikovskaia, J. Phys. D 47, 353001 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    S. B. Leonov, I. V. Adamovich, and V. R. Soloviev, Plasma Sources Sci. Technol. 25, 063001 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    V. R. Soloviev and V. M. Krivtsov, J. Phys. D 42, 125208 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    S. A. Stepanyan, V. R. Soloviev, and S. M. Starikovskaia, J. Phys. D 47, 485201 (2014).CrossRefGoogle Scholar
  8. 8.
    V. R. Soloviev, V. M. Krivtsov, S. A. Shcherbanev, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 26, 014001 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    M. M. Nudnova, N. L. Aleksandrov, and A. Yu. Starikovskii, Plasma Phys. Rep. 36, 90 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    Th. Unfer and J. P. Boeuf, J. Phys. D 42, 194017 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    M. I. D’yakonov and V. Yu. Kachorovskii, Sov. Phys. JETP 67, 1049 (1988).Google Scholar
  12. 12.
    M. I. D’yakonov and V. Yu. Kachorovskii, Sov. Phys. JETP 68, 1070 (1989).Google Scholar
  13. 13.
    E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).Google Scholar
  14. 14.
    N. Benard and E. Moreau, Appl. Phys. Lett. 100, 193503 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    V. R. Soloviev, I. V. Selivonin, and I. A. Moralev, Phys. Plasmas 24, 103528 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    S. A. Stepanyan, A. Yu. Starikovskiy, N. A. Popov, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 23, 045003 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    V. R. Soloviev and V. M. Krivtsov, Plasma Phys. Rep. 40, 65 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    V. Soloviev and V. Krivtsov, J. Phys. Conf. Ser. 927, 012059 (2017).CrossRefGoogle Scholar
  19. 19.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).Google Scholar
  20. 20.
    M. I. D’yakonov and A. S. Furman, Sov. Phys. JETP 65, 574 (1987).Google Scholar
  21. 21.
    A. N. Lagarkov and I. M. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Nauka, Moscow, 1989; Springer-Verlag, 1994).Google Scholar
  22. 22.
    S. V. Pancheshnyi and A. Yu. Starikovskii, Plasma Sources Sci. Technol. 13, 1 (2004).CrossRefGoogle Scholar
  23. 23.
    G. V. Naidis, Phys. Rev. E 79, 057401 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    S. V. Pancheshnyi, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 34, 1 (2001).CrossRefGoogle Scholar
  25. 25.
    M. B. Zheleznyak, A. Kh. Mnatsakanyan, and S. V. Sizykh, High Temp. 20, 357 (1982).ADSGoogle Scholar
  26. 26.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar
  27. 27.
    V. I. Gibalov and G. J. Pietsch, J. Phys. D 33, 2618 (2000).ADSCrossRefGoogle Scholar
  28. 28.
    G. J. Pietsch and A. Saveliev, in Proceedings of the14th International Conference on Gas Discharges and Their Applications, Liverpool, 2002, p. 183.Google Scholar
  29. 29.
    Yu. Akishev, G. Aponin, A. Balakirev, M. Grushin, V. Karalnik, A. Petryakov, and N. Trushkin, Plasma Sources Sci. Technol. 22, 015004 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  2. 2.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations