Advertisement

Plasma Physics Reports

, Volume 45, Issue 3, pp 220–229 | Cite as

Electric Field and Poloidal Rotation in the Turbulent Edge Plasma of the T-10 Tokamak

  • R. V. ShuryginEmail author
  • A. V. Melnikov
TOKAMAKS
  • 10 Downloads

Abstract

The dynamics of turbulent edge plasma in the T-10 tokamak is simulated numerically by solving reduced nonlinear MHD equations of Braginskii’s two-fluid hydrodynamics. It is shown that the poloidal plasma velocity is determined by the combined effect of two forces: the turbulent Reynolds force FR and the Stringer–Winsor geodesic force FSW, which is associated with the geodesic acoustic mode of the total plasma pressure \(\left\langle {p{\text{sin}}\theta } \right\rangle \). It follows from the simulation results that the FR and FSW forces are directed oppositely and partially balance one another. It is shown that, as the electron temperature increases, the resulting balance of these forces changes in such a way that the amplitude of the poloidal ion flow velocity and, accordingly, the electrostatic potential \({{\phi }_{0}}(r,t)\) decrease. As the plasma density increases, the “driving forces” of turbulence (the dn0/dr and dp0/dr gradients) also increase, while dissipation due to the longitudinal current decreases, which results in an increase in the amplitude of turbulent fluctuations and the Reynolds force FR. On one hand, the force FSW increases with increasing plasma density due to an increase in the pressure \(\left\langle {p{\text{sin}}\theta } \right\rangle \); however, on the other hand, it decreases in view of the factor 1/n0. As a result, the net force driving poloidal rotation increases, which leads to the growth of the plasma potential. Both under electron-cyclotron resonance heating and in regimes with evolving plasma density, the results of numerical simulations qualitatively agree with experimental data on the electrostatic potential of the T-10 plasma.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 14-22-00193. A.V. Melnikov acknowledges the support from the National Research Nuclear University “MEPHI.”

REFERENCES

  1. 1.
    A. V. Melnikov, Electric Potential in Plasmas of Toroidal Devices (NIYaU MIFI, Moscow, 2015) [in Russian].Google Scholar
  2. 2.
    F. Wagner, Plasma Phys. Controlled Fusion 49, B1 (2007). ADSCrossRefGoogle Scholar
  3. 3.
    T. Viezzer, G. D. Putterich, R. Conway, R. Dux, T. Happel, J. C. Fuchs, R. M. McDermott, F. Ryter, B. Sieglin,W. Suttrop1, M. Willensdorfer, E. Wolfrum, and the ASDEX Upgrade Team, Nucl. Fusion 53, 053005 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Melnikov, V. A. Vershkov, and S. A. Grashin, in Proceedings of the 37th EPS Conference on Plasma Physics, Dublin, 2010, ECA 34A, O5.1280 (2010).Google Scholar
  5. 5.
    A. V. Melnikov, L. G. Eliseev, S. V. Perfilov, V. F. Andreev, S. A. Grashin, K. S. Dyabilin, A. N. Chudnovskiy, M. Yu. Isaev, S. E. Lysenko, V. A. Mavrin, M. I. Mikhailov, D. V. Ryzhakov, R. V. Shurygin, and V. N. Zenin, Nucl. Fusion 53, 093019 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    A. N. Simakov and P. J. Catto, Phys. Plasmas 10, 4744 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    A. Zeiler, J. F. Drake, and B. Rogers, Phys. Plasmas 4, 2134 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    R. V. Shurygin and D. Kh. Morozov, Plasma Phys. Rep. 40, 919 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    R. V. Shurygin and A. A. Mavrin, Plasma Phys. Rep. 36, 535 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    O. E. Garsia, N. H. Bian, and W. Fundamenski, Phys. Plasmas 13, 082309 (2006).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    P. N. Guzdar and A. B. Hassam, Phys. Plasmas 3, 3701 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    R. V. Shurygin and A. V. Melnikov, Plasma Phys. Rep. 44, 303 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    D. R. McCarthy, J. F. Drake, P. N. Guzdar, and A. B. Hassam, Phys. Fluids 4, 1188 (1993).CrossRefGoogle Scholar
  14. 14.
    N. Miyato, J. Li, and Y. Kishimoto, Nucl. Fusion 45, 425 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    V. A. Rozhansky, S. P. Voskoboynikov, E. G. Kaveeva, D. P. Coster, and R. Schneider, Nucl. Fusion 41, 387 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    V. A. Rozhansky, S. P. Voskoboynikov, E. G. Kaveeva, D. P. Coster, X. Bonnin, and R. Schneider, Nucl. Fusion 43, 614 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    V. Rozhansky, Contrib. Plasma Phys. 46, 575 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    T. D. Rognlien, D. D. Ryutov, N. Mattor, and C. D. Porter, Phys. Plasmas 6, 1851 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Melnikov, L. I. Krupnik, L. G. Eliseev, J. M. Barcala, A. Bravo, A. A. Chmyga, G. N. Deshko, M. A. Drabinskij, C. Hidalgo, P. O. Khabanov, S. M. Khrebtov, N. K. Kharchev, A. D. Komarov, A. S. Kozachek, J. Lopez, et al., Nucl. Fusion 57, 072004 (2017).Google Scholar
  20. 20.
    A. V. Melnikov, L. I. Krupnik, E. Ascasibar, A. Cappa, A. A. Chmyga, G. N. Deshko, M. A. Drabinskij, L. G. Eliseev, C. Hidalgo, P. O. Khabanov, S. M. Khrebtov, N. K. Kharchev, A. D. Komarov, A. S. Kozachek, S. E. Lysenko, et al., Plasma Phys. Controlled Fusion 60, 084008 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations