Plasma Physics Reports

, Volume 45, Issue 3, pp 230–236 | Cite as

Acceleration and Trapping of Ions upon Collision of Ion-Acoustic Solitary Waves in Plasma with Negative Ions

  • Yu. V. MedvedevEmail author


The phenomena occurring under head-on collision of ion-acoustic solitary waves in collisionless plasma consisting of positive and negative ions and electrons obeying the Boltzmann distribution are considered. Using particle-in-cell simulations, it is shown that large-amplitude compressive ion-acoustic solitary waves do not preserve their identity after the collision. Their amplitudes decrease and their shapes change. It is shown that the collision is accompanied by the generation of fast positive ions the velocity of which can exceed more than threefold the speed of sound. In addition, the collision is accompanied by the trapping of negative ions by the field of ion-acoustic solitary waves formed after the collision.



  1. 1.
    G. C. Das and S. G. Tagare, Plasma Phys. 17, 1025 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    G. O. Ludwig, J. L. Ferreira, and Y. Nakamura, Phys. Rev. Lett. 52, 275 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Nakamura and I. Tsukabayashi, Phys. Rev. Lett. 52, 2356 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    J. L. Cooney, D. W. Aossey, J. E. Williams, and K. E. Lonngren, Phys. Rev. E 47, 564 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    T. Takeuchi, S. Iizuka, and N. Sato, Phys. Rev. Lett. 80, 77 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    J. F. McKenzie, F. Verheest, T. B. Doyle, and M. A. Hellberg, Phys. Plasmas 11, 1762 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Nakamura, J. L. Ferreira, and G. O. Ludwig, J. Plasma Phys. 33, 237 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Nakamura and I. Tsukabayashi, J. Plasma Phys. 34, 401 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    J. L. Cooney, M. T. Gavin, J. E. Williams, D. W. Aossey, and K. E. Lonngren, Phys. Fluids B 3, 3277 (1991).Google Scholar
  11. 11.
    D. W. Aossey, S. R. Skinner, J. L. Cooney, J. E. Williams, M. T. Gavin, D. R. Andersen, and K. E. Lonngren, Phys. Rev. A 45, 2606 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    F. Verheest, M. A. Hellberg, and W. A. Hereman, Phys. Plasmas 19, 092302 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    P. Chatterjee, U. N. Ghosh, K. Roy, S. V. Muniandy, C. S. Wong, and B. Sahu, Phys. Plasmas 17, 122314 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    S. A. El-Tantawy and W. M. Moslem, Phys. Plasmas 21, 052112 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    S.-S. Ruan, W.-Y. Jin, S. Wu, and Z. Cheng, Astrophys. Space Sci. 350, 523 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    K. Roy, T. K. Maji, M. K. Ghorui, P. Chatterjee, and R. Roychoudhury, Astrophys. Space Sci. 352, 151 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    K. Roy, P. Chatterjee, and R. Roychoudhury, Phys. Plasmas 21, 104509 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    M. A. Khaled, Astrophys. Space Sci. 350, 607 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    U. N. Ghosh, K. Roy, and P. Chatterjee, Phys. Plasmas 18, 103703 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    P. Chatterjee, M. Ghorui, and C. S. Wong, Phys. Plasmas 18, 103710 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    M. K. Ghorui, U. K. Samanta, T. K. Maji, and P. Chatterjee, Astrophys. Space Sci. 352, 159 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    S. Parveen, S. Mahmood, M. Adnan, and A. Qamar, Phys. Plasmas 23, 092122 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    J. Zhang, Y. Yang, Y.-X. Xu, L. Yang, X. Qi, and W.‑S. Duan, Phys. Plasmas 21, 103706 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    Yu. V. Medvedev, J. Phys. Commun. 2, 045001 (2018).CrossRefGoogle Scholar
  25. 25.
    Yu. V. Medvedev, Plasma Phys. Rep. 44, 544 (2018).ADSCrossRefGoogle Scholar
  26. 26.
    Yu. V. Medvedev, Plasma Phys. Rep. 35, 62 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    Yu. V. Medvedev, Nonlinear Phenomena during Discontinuity Decay in Rarefied Plasma (Fizmatlit, Moscow, 2012) [in Russian].Google Scholar
  28. 28.
    M. K. Mishra and R. S. Chhabra, Phys. Plasmas 3, 4446 (1996).ADSCrossRefGoogle Scholar
  29. 29.
    H. Schamel, Plasma Phys. 14, 905 (1972).ADSCrossRefGoogle Scholar
  30. 30.
    M. Roberto, G. O. Ludwig, and J. A. Bittencourt, Plasma Phys. Controlled Fusion 31, 895 (1989).ADSCrossRefGoogle Scholar
  31. 31.
    S. M. H. Jenab and F. Spanier, Phys. Plasmas 24, 032305 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations