Skip to main content
Log in

System of Kinetic Equations for Collisionless Space Plasma in the Approximation of Field-Aligned Force Equilibrium for Electrons

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A system of kinetic equations describing relatively slow large-scale processes in collisionless magnetoplasma structures with a spatial resolution on the order of the proton thermal gyroradius is derived. The system correctly takes into account the electrostatic effects in the approximation of field-aligned force equilibrium for electrons. The plasma is considered quasineutral, and the magnetic field is described by the Ampère equation. The longitudinal component of the electric field is found explicitly from the equality of the field-aligned component of the electric force acting on plasma electrons and the divergence of the electron pressure tensor. The electric field component orthogonal to the magnetic field is determined by the distributions of the number densities, current densities, and stress tensors of all plasma species in the instantaneous long-range approximation described by a system of time-independent elliptic equations. Versions of the system of equations adapted to the case of magnetized electrons described by the Vlasov equation in the drift approximation, as well as to the case in which all plasma species are magnetized, are derived. The resulting systems of equations allow creating numerical models capable of describing large-scale processes in nonuniform collisionless space plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nishida, Geomagnetic Diagnosis of the Magnetosphere (Springer-Verlag, Berlin, 1978).

    Book  Google Scholar 

  2. L. M. Zelenyi, H. V. Malova, A. V. Artemyev, V. Yu. Popov, and A. A. Petrukovich, Plasma Phys. Rep. 37, 118 (2011).

    Article  ADS  Google Scholar 

  3. J. P. Eastwood, H. Hietala, G. Toth, T. D. Phan, and M. Fujimoto, Space Sci. Rev. 188, 251 (2015).

    Article  ADS  Google Scholar 

  4. W. D. Gonzalez, B. T. Tsurutani, and A. L. Clúa de Gonzalez, Space Sci. Rev. 88, 529 (1999).

    Article  ADS  Google Scholar 

  5. M. J. Owens, C. J. Scott, A. J. Bennett, S. R. Thomas, M. Lockwood, R. G. Harrison, and M. M. Lam, Geophys. Rev. Lett. 42, 9624 (2015).

    Article  ADS  Google Scholar 

  6. R. Koleva, J. Semkova, V. Smirnov, and A. Fedorov, Adv. Space Res. 31, 1309 (2003).

    Article  ADS  Google Scholar 

  7. A. V. Artemyev, I. Y. Vasko, V. N. Lutsenko, and A. A. Petrukovich, Ann. Geophys. 32, 1233 (2014).

    Article  ADS  Google Scholar 

  8. V. A. Sergeev, T. I. Pulkkinen, and R. J. Pellinen, J. Geophys. Res. 101, 13047 (1996).

    Article  ADS  Google Scholar 

  9. A. Runov, R. Nakamura, W. Baumjohann, R. A. Treumann, T. L. Zhang, M. Volwerk, Z. Voros, A. Balogh, K.-H. Glassmeier, B. Klecker, H. Rème, and L. Kistler, Geophys. Rev. Lett. 30, 33 (2003).

    Google Scholar 

  10. E. V. Panov, J. Buchner, M. Fränz, A. Korth, S. P. Savin, H. Rème, K.-H. Fornaçon, J. Geophys. Res. 113, A01220 (2008).

    Google Scholar 

  11. G. Lapenta, J. U. Brackbill, and P. Ricci, Phys. Plasmas 13, 055904 (2006).

    Article  ADS  Google Scholar 

  12. S. Markidis and G. Lapenta, Math. Comput. Simulat. 80, 1509 (2010).

    Article  Google Scholar 

  13. G. Lapenta, J. Comput. Phys. 231, 795 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Cai, A. Esmaeili, B. Lembege, and K.-I. Nishikawa, J. Geophys. Res. Space Phys. 120, 8368 (2015).

    Article  ADS  Google Scholar 

  15. A. Le, J. Egedal, W. Fox, N. Katz, A. Vrublevskis, W. Daughton, and J. F. Drake, Phys. Plasmas 17, 055703 (2010).

    Article  ADS  Google Scholar 

  16. J. Dec, A. Divin, G. Lapenta, B. Lembège, S. Markidis, and M. Horányi, Phys. Rev. Lett. 112, 151102 (2014).

    Article  ADS  Google Scholar 

  17. S. Markidis, G. Lapenta, L. Bettarini, M. Goldman, D. Newman, and L. Andersson, J. Geophys. Res. Space Phys. 116, A00K16 (2011).

    Google Scholar 

  18. P. L. Pritchet, Phys. Plasmas 12, 062301 (2005).

    Article  ADS  Google Scholar 

  19. M. Hesse, Phys. Plasmas 13, 122107 (2005).

    Article  ADS  Google Scholar 

  20. O. V. Mingalev, I. V. Mingalev, H. V. Malova, M. N. Mel’nik, and L. M. Zelenyi, Plasma Phys. Rep. 43, 1004 (2017).

    Article  ADS  Google Scholar 

  21. W. C. Knudsen, J. Geophys. Res. 79, 1046 (1974).

    Article  ADS  Google Scholar 

  22. V. A. Vlaskov, Yu. G. Mizun, V. S. Mingalev, G. I. Mingaleva, T. A. Parfenova, V. N. Krivilev, and T. V. Syrnikova, in Problems in Physics of High-Latitude Ionosphere, Ed. by B. E. Bryunelli (Nauka, Leningrad, 1976), p. 3 [in Russian].

    Google Scholar 

  23. J. D. Huba, G. Joyce, and J. A. Fedder, J. Geophys. Res. 105, 23 (2000).

    Article  Google Scholar 

  24. J. D. Huba, G. Joyce, and J. Krall, Geophys. Rev. Lett. 35, L10102 (2008).

    Google Scholar 

  25. J. D. Huba, A. Maute, and G. Crowley, Space Sci. Rev. 212, 731 (2017).

    Article  ADS  Google Scholar 

  26. A. J. Ridley, Y. Deng, and G. Toth, J. Atmos. Sol.-Terr. Phys. 68, 839 (2006).

    Article  ADS  Google Scholar 

  27. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  28. T. F. Volkov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 1.

    Google Scholar 

  29. O. V. Mingalev, I. V. Mingalev, M. N. Mel’nik, O. I. Akhmetov, and Z. V. Suvorova, Mat. Model. 30, 59 (2018).

    Google Scholar 

  30. A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 2, p. 201.

    Google Scholar 

  31. S. I. Braginskii, Ukr. Mat. Zh. 8, 119 (1958).

    MathSciNet  Google Scholar 

  32. D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Mingalev.

Additional information

Original Russian Text © O.V. Mingalev, I.V. Mingalev, H.V. Malova, A.M. Merzlyi, L.M. Zelenyi, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 11, pp. 889–904.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingalev, O.V., Mingalev, I.V., Malova, H.V. et al. System of Kinetic Equations for Collisionless Space Plasma in the Approximation of Field-Aligned Force Equilibrium for Electrons. Plasma Phys. Rep. 44, 1033–1047 (2018). https://doi.org/10.1134/S1063780X18110065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18110065

Navigation