Skip to main content
Log in

Observation and Investigation of “Reverse Breakdown” in a Discharge Tube

  • Plasma Diagnostics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A discharge operating in a 80-cm-long discharge tube with an inner diameter of 15 mm, filled with a 3 : 1 neon–argon mixture at a pressure of 1 Torr, was investigated experimentally. Square voltage pulses with a period of 1 s were supplied to one of the tube electrodes, the second electrode being ungrounded. The initial stage of breakdown—the primary breakdown between the high-voltage (active) electrode and the tube wall, accompanied by the propagation of the prebreakdown ionization wave—was the same as in the conventional scheme with a grounded low-voltage electrode. Since the discharge gap was not closed, the discharge was not ignited. An essentially new effect was observed after the end of the voltage pulse. After a certain time interval, voltage spikes of opposite polarity, the amplitude and shape of which were close to those observed during the primary breakdown, appeared in the voltage and current waveforms of the active electrode. Simultaneously, a radiation pulse from the region adjacent to the active electrode was observed and an ionization wave began to propagate toward the second electrode. This work is dedicated to investigating this effect (which was named “reverse breakdown”) and analyzing its mechanism. A conclusion is made on the similarity of this phenomenon to the processes occurring in atmospheric-pressure dielectric barrier discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Nedospasov and A. E. Novik, Sov. Phys. Tech. Phys. 5, 1261 (1961).

    Google Scholar 

  2. R. E. Horstman and F. M. O. Lansink, J. Phys. D 21, 1130 (1988).

    Article  ADS  Google Scholar 

  3. M. F. Gendre, M. D. Bowden, H. Haverlag, H. C. M. van den Nieuwenhuizen, J. Gielen, and G. M. W. Kroesen, in Proceedings of Frontiers in Low Temperature Plasma Diagnostics V, Specchia, 2003, Ed. by S. De Benedictis and G. Dilecce, p. 295.

  4. W. J. M. Brok, J. van Dijk, M. D. Bowden, J. J. A. M. van der Mullenand, and G. M. W. Kroesen, J. Phys. D 36, 1967 (2003).

    Article  ADS  Google Scholar 

  5. M. F. Gendre, M. D. Bowden, H. C. M. van den Nieuwenhuizen, M. Haverlag, J. W. A. M. Gielen, and G. M. W. Kroesen, IEEE Trans. Plasma Sci. 33, 262 (2005).

    Article  ADS  Google Scholar 

  6. W. J. M. Brok, M. F. Gendre, and J. J. A. M. van der Mullen, J. Phys. D 40, 156 (2007).

    Article  ADS  Google Scholar 

  7. W. J. M. Brok, M. F. Gendre, M. Haverlag, and J. J. A. M. van der Mullen, J. Phys. D 40, 3931 (2007).

    Article  ADS  Google Scholar 

  8. R. Langer, R. Garner, A. Hilscher, R. Tidecks, and S. Horn, J. Phys. D 41, 144011 (2008).

    Article  ADS  Google Scholar 

  9. M. F. Gendre, M. Haverlag, and G. M. W. Kroesen, J. Phys. D 43, 234004 (2010).

    Article  ADS  Google Scholar 

  10. N. A. Dyatko, Yu. Z. Ionikh, A. V. Meshchanov, A. P. Napartovich, and A. I. Shishpanov, Plasma Phys. Rep. 37, 505 (2011).

    Article  ADS  Google Scholar 

  11. A. I. Shishpanov, Yu. Z. Ionikh, A. V. Meshchanov, and N. A. Dyatko, Plasma Phys. Rep. 40, 467 (2014).

    Article  ADS  Google Scholar 

  12. A. V. Meshchanov, A. N. Korshunov, Yu. Z. Ionikh, and N. A. Dyatko, Plasma Phys. Rep. 41, 677 (2015).

    Article  ADS  Google Scholar 

  13. A. V. Meshchanov, Yu. Z. Ionikh, A. I. Shishpanov, and S. A. Kalinin, Plasma Phys. Rep. 42, 978 (2016).

    Article  ADS  Google Scholar 

  14. A. I. Shishpanov, A. V. Meshchanov, S. A. Kalinin, and Y. Z. Ionikh, Plasma Sources Sci. Technol. 26, 065017 (2017).

    Article  ADS  Google Scholar 

  15. S. A. Kalinin, A. V. Meshchanov, A. I. Shishpanov, and Yu. Z. Ionikh, Plasma Phys. Rep. 44, 345 (2018).

    Article  ADS  Google Scholar 

  16. L. M. Vasilyak, E. I. Asinovskii, and I. S. Samoilov, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov: Introductional Volume (Nauka/Interperiodika, Moscow, 2000), Part II, p. 225 [in Russian].

    Google Scholar 

  17. Yu. B. Golubovski, V. A. Maiorov, J. Behnke, and J. F. Behnke, J. Phys. D 35, 751 (2002).

    Article  ADS  Google Scholar 

  18. M. Li, C. Li, H. Zhan, J. Xu, and X. Wang, Appl. Phys. Lett. 92, 031503 (2008).

    Article  ADS  Google Scholar 

  19. P. F. Ambrico, M. Ambrico, L. Schiavull, and S. De Benedictis, J. Phys. D 47, 305201 (2014).

    Article  Google Scholar 

  20. R. Tschiersch, M. Bogaczyk, and H.-E. Wagner, J. Phys. D 47, 365204 (2014).

    Article  Google Scholar 

  21. S. V. Pancheshnyi, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 32, 2219 (1999).

    Article  ADS  Google Scholar 

  22. M. Laroussi, X. Lu, V. Kolobov, and R. Arslanbekov, J. Appl. Phys. 96, 3028 (2004).

    Article  ADS  Google Scholar 

  23. W. Bartholomeyckzyk, Ann. Phys. (Lpz.) 36, 485 (1939).

    Article  ADS  Google Scholar 

  24. L. N. Tunitskii and A. I. Ignashev, Svetotekhnika, No. 2, 23 (1955).

    Google Scholar 

  25. D. Uhrlandt, M. Schmidt, J. F. Behnke, and T. Bindemann, J. Phys. D 33, 2475 (2000).

    Article  ADS  Google Scholar 

  26. R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. B 85, 075323 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Z. Ionikh.

Additional information

Original Russian Text © S.A. Kalinin, M.A. Kapitonova, R.M. Matveev, A.V. Meshchanov, Yu.Z. Ionikh, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 11, pp. 864–874.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, S.A., Kapitonova, M.A., Matveev, R.M. et al. Observation and Investigation of “Reverse Breakdown” in a Discharge Tube. Plasma Phys. Rep. 44, 1009–1018 (2018). https://doi.org/10.1134/S1063780X18110053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18110053

Navigation