Skip to main content
Log in

Electrostatic Solitary Pulses in a Dusty Electronegative Magnetoplasma

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The nonlinear characteristics of dust-electron-acoustic (DEA) waves in a dusty electronegative magnetoplasma system consisting of nonextensive hot electrons, inertial cold electrons, positively charged static ions, and negatively charged immobile dust grains has been investigated. In this observation, the well-known reductive perturbation technique is employed to determine different types of nonlinear dynamical equations, namely, magnetized Korteweg–de Vries (KdV), magnetized modified KdV (mKdV), and magnetized Gardner equations. The stationary solitary wave and double layer solution of these three equations, which describe the characteristics of solitary waves and double layers of DEA waves, are obtained and numerically analyzed. It is noticed that various plasma parameters (viz., hot electron nonextensivity, positive ion-to-cold electron number density ratio, dust-to-cold electron number density ratio, etc.) significantly affect the basic properties of DEA solitary waves (DEASWs) and Gardner solitons (GSs). The prodigious results found from this theoretical investigation may be useful for researchers to investigate the nonlinear structures in various space and laboratory plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).

    Article  ADS  Google Scholar 

  2. F. Verheest, Waves in Dusty Space Plasmas (Astrophysical and Space Science Library, Vol. 245) (Kluwer Academic, Dordrecht, 2000).

    Book  Google Scholar 

  3. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, London, 2002).

    Book  Google Scholar 

  4. P. K. Shukla, G. T. Birk, and G. E. Morphil, Phys. Scr. 56, 299 (1997).

    Article  ADS  Google Scholar 

  5. C. K. Geortz, Rev. Geophys. 27, 271 (1989).

    Article  ADS  Google Scholar 

  6. A. A. Mamun and S. Tasnim, Phys. Plasmas 17, 073704 (2010).

    Article  ADS  Google Scholar 

  7. R. N. Franklin, Plasma Sources Sci. Technol. 11, A31 (2002).

    Google Scholar 

  8. R. L. Tokar and S. P. Gary, Geophys. Res. Lett. 11, 1180 (1984).

    Article  ADS  Google Scholar 

  9. N. Dubouloz, R. Pottelette, M. Malingre, and R. A. Treumann, Geophys. Res. Lett. 18, 155 (1991).

    Article  ADS  Google Scholar 

  10. M. Asaduzzaman and A. A. Mamun, Phys. Rev. E 86, 016409 (2012).

    Article  ADS  Google Scholar 

  11. S. Pervin, S. S. Duha, M. Asaduzzaman, and A. A. Mamun, J. Plasma Phys. 79, 1 (2012).

    Article  ADS  Google Scholar 

  12. C. Tsallis, J. Statist. Phys. 52, 479 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  13. M. R. Hossen, S. A. Ema, and A. A. Mamun, IEEE Trans. Plasma Sci. 44, 492 (2016).

    Article  ADS  Google Scholar 

  14. W. M. Moslem, R. Sabry, S. K. El-Labany, and P. K. Shukla, Phys. Rev. E 84, 066402 (2011).

    Article  ADS  Google Scholar 

  15. A. R. Plastino and A. Plastino, Phys. Lett. A 174, 384 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Lavagno and D. Pigato, Phys. J. A 47, 52 (2011).

    ADS  Google Scholar 

  17. C. Feron and J. Hjorth, Phys. Rev. E 77, 022106 (2008).

    Article  ADS  Google Scholar 

  18. S. M. Krimigis, J. F. Carbary, E. P. Keath, T. P. Armstrong, L. J. Lanzerotti, and G. Gloeckler, J. Geophys. Res. 88, 8871 (1983).

    Article  ADS  Google Scholar 

  19. S. A. Ema, M. Ferdousi, S. Sultana, and A. A. Mamun, Eur. Phys. J. Plus 130, 46 (2015).

    Article  Google Scholar 

  20. S. Yasmin, M. Asaduzzaman, and A. A. Mamun, J. Plasma Phys. 79, 545 (2013).

    Article  ADS  Google Scholar 

  21. A. S. Bains, M. Tribeche, and C. S. Ng, Astrophys. Space Sci. 343, 621628 (2013).

    Google Scholar 

  22. M. Ferdousi, S. Yasmin, S. Ashraf, and A. A. Mamun, Astrophys. Space Sci. 352, 579 (2014).

    Article  ADS  Google Scholar 

  23. S. A. Ema, M. R. Hossen, and A. A. Mamun, Phys. Plasmas 22, 092108 (2015).

    Article  ADS  Google Scholar 

  24. S. A. Ema, M. R. Hossen, and A. A. Mamun, Contrib. Plasma Phys. 55, 596 (2015).

    Article  ADS  Google Scholar 

  25. S. Sultana, I. Kourakis, and M. A. Hellberg, Plasma Phys. Controlled Fusion 54, 105016 (2012).

    Article  ADS  Google Scholar 

  26. L. N. Mbuli, S. K. Maharaj, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 22, 062307 (2015).

    Article  ADS  Google Scholar 

  27. L. N. Mbuli, S. K. Maharaj, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 23, 062302 (2016).

    Article  ADS  Google Scholar 

  28. S. A. Ema, M. R. Hossen, and A. A. Mamun, Contrib. Plasma Phys. 55, 551 (2015).

    Article  ADS  Google Scholar 

  29. M. R. Hossen, and A. A. Mamun, Braz. J. Phys. 45, 200 (2015).

    Article  ADS  Google Scholar 

  30. M. R. Hossen, and A. A. Mamun, J. Korean Phys. Soc. 65, 1883 (2014).

    Article  ADS  Google Scholar 

  31. R. L. Mace, S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 45, 323 (1991).

    Article  ADS  Google Scholar 

  32. M. Berthomier, R. Pottelette, M. Malingre, and Y. Khotyainsev, Phys. Plasmas 7, 2987 (2000).

    Article  ADS  Google Scholar 

  33. R. L. Mace and M. A. Hellberg, Phys. Plasmas 8, 2649 (2001).

    Article  ADS  Google Scholar 

  34. A. A. Mamun and P. K. Shukla, Phys. Plasmas 9, 1474 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  35. M. R. Hossen, S. A. Ema, and A. A. Mamun, Chin. Phys. Lett. 33, 065203 (2016).

    Article  ADS  Google Scholar 

  36. A. A. Mamun, Phys. Lett. A 372, 4610 (2003).

    Article  ADS  Google Scholar 

  37. S. A. Ema, M. Ferdousi, and A. A. Mamun, Phys. Plasmas 22, 043702 (2015).

    Article  ADS  Google Scholar 

  38. A. A. Mamun, P. K. Shukla, and B. Eliasson, Phys. Plasmas 16, 114503 (2009).

    Article  ADS  Google Scholar 

  39. M. Tribeche and A. Merriche, Phys. Plasmas 18, 034502 (2011).

    Article  ADS  Google Scholar 

  40. U. N. Ghosh, D. K. Ghosh, and P. Chatterjee, Astrophys. Space Sci. 343, 265272 (2013).

    Article  Google Scholar 

  41. H. R. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  42. M. Mobarrak Hossen, M. S. Alam, S. Sultana, and A. A. Mamun, Phys. Plasmas 23, 023703 (2016).

    Article  ADS  Google Scholar 

  43. S. T. Shuchy, A. Mannan, and A. A. Mamun, IEEE Trans. Plasma Sci. 41, 2438 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Banik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banik, S., Amina, M., Ema, S.A. et al. Electrostatic Solitary Pulses in a Dusty Electronegative Magnetoplasma. Plasma Phys. Rep. 44, 1057–1065 (2018). https://doi.org/10.1134/S1063780X18110028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18110028

Navigation