Skip to main content
Log in

Relativistic Ion-Acoustic Solitary Waves in a Magnetized Pair Ion Dense Plasma with Nuclei of Heavy Elements

  • Nonideal Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The propagation of ion-acoustic solitary waves (IASWs) in a magnetized collisionless degenerate plasma system for describing collective plasma oscillations in dense quantum plasmas with relativistically degenerate electrons, oppositely charged inertial ions, and positively charged immobile heavy elements is investigated theoretically. The perturbations of the magnetized quantum plasma are studied employing the reductive perturbation technique to derive the Korteweg–de Vries (KdV) and the modified KdV (mKdV) equations that admit solitary wave solutions. Chandrasekhar limits are used to investigate the degeneracy effects of interstellar compact objects through the equation of state for degenerate electrons in nonrelativistic and ultrarelativistic cases. The basic properties of small but finite-amplitude IASWs are modified significantly by the combined effects of the degenerate electron number density, pair ion number density, static heavy element number density, and magnetic field. It is found that the obliqueness affects both the amplitude and width of the solitary waves, whereas the other parameters mainly influence the width of the solitons. The results presented in this paper can be useful for future investigations of astrophysical multi-ion plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. S. Tiwari and S. R. Sharma, Phys. Lett. A 77, 30 (1980).

    Article  ADS  Google Scholar 

  2. N. D’Angelo, Planet. Space Sci. 38, 1143 (1990).

    Article  ADS  Google Scholar 

  3. M. R. Hossen, L. Nahar, and A. A. Mamun, J. Korean Phys. Soc. 65, 1863 (2014).

    Article  ADS  Google Scholar 

  4. M. R. Hossen, L. Nahar, and A. A. Mamun, J. Astrophys. 2014, 653065 (2014).

    Article  Google Scholar 

  5. Y. Nakamura and Y. Saitou, Plasma Phys. Controlled Fusion 45, 759 (2003).

    Article  ADS  Google Scholar 

  6. A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Lett. A 373, 2355 (2009).

    Article  ADS  Google Scholar 

  7. M. R. Hossen, L. Nahar, and A. A. Mamun, Plasma Phys. Rep. 43, 1189 (2017).

    Article  ADS  Google Scholar 

  8. M. Shahmansouri, H. Alinejad, and M. Tribeche, Commun. Theor. Phys. 64, 555 (2015).

    Article  ADS  Google Scholar 

  9. F. B. Rizzato, R. S. Schneider, and D. Dillenburg, Plasma Phys. Controlled Fusion 29, 1127 (1987).

    Article  ADS  Google Scholar 

  10. R. A. Gottscho and C. E. Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986).

    Article  ADS  Google Scholar 

  11. M. Bacal and G. W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979).

    Article  ADS  Google Scholar 

  12. J. Jacquinot, B. D. McVey, and J. E. Scharer, Phys. Rev. Lett. 39, 88 (1977).

    Article  ADS  Google Scholar 

  13. A. Ortner, D. Schumacher, W. Cayzac, A. Frank, M. M. Basko, S. Bedacht, A. Blazevic, S. Faik, D. Kraus, T. Rienecker, G. Schaumann, An. Tauschwitz, F. Wagner, and M. Roth, J. Phys. Conf. Ser. 688, 012081 (2016).

    Article  Google Scholar 

  14. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  15. R. Z. Sagdeev, Rev. Plasma Phys. 4, 23 (1966).

    ADS  Google Scholar 

  16. S. I. Popel, S. V. Vladimirov, and P. K. Shukla, Phys. Plasmas 2, 716 (1995).

    Article  ADS  Google Scholar 

  17. A. A. Mamun, Phys. Rev. E 55, 1852 (1997).

    Article  ADS  Google Scholar 

  18. A. A. Mamun and P. K. Shukla, Phys. Lett. A 290, 173 (2001).

    Article  ADS  Google Scholar 

  19. B. Hosen, M. G. Shah, M. R. Hossen, and A. A. Mamun, Euro. Phys. J. Plus 131, 81 (2016).

    Article  Google Scholar 

  20. B. Hosen, M. G. Shah, M. R. Hossen, and A. A. Mamun, IEEE Trans. Plasma Sci. 45, 3316 (2017).

    Article  ADS  Google Scholar 

  21. M. Shahmansouri and M. Tribeche, Astrophys. Space Sci. 350, 781 (2014).

    Article  ADS  Google Scholar 

  22. S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 41, 341 (1989).

    Article  ADS  Google Scholar 

  23. W. K. M. Rice, M. A. Hellberg, R. L. Mace, and S. Baboolal, Phys. Lett. A 174, 416 (1993).

    Article  ADS  Google Scholar 

  24. S. S. Ghosh, K. K. Ghosh, and A. N. Sekar Iyengar, Phys. Plasmas 3, 3939 (1996).

    Article  ADS  Google Scholar 

  25. M. G. Shah, M. M. Rahman, M. R. Hossen, and A. A. Mamun, Commun. Theor. Phys. 64, 208 (2015).

    Article  ADS  Google Scholar 

  26. M. G. Shah, M. M. Rahman, M. R. Hossen, and A. A. Mamun, Plasma Phys. Rep. 42, 168 (2016).

    Article  ADS  Google Scholar 

  27. H. Alinejad and A. A. Mamun, Phys. Plasmas 18, 112103 (2011).

    Article  ADS  Google Scholar 

  28. M. R. Hossen, L. Nahar, S. Sultana, and A. A. Mamun, Astrophys. Space Sci. 353, 123 (2014).

    Article  ADS  Google Scholar 

  29. M. G. Shah, M. R. Hossen, S. Sultana, and A. A. Mamun, Chin. Phys. Lett. 32, 085203 (2015).

    Article  ADS  Google Scholar 

  30. M. Y. Yu, P. K. Shukla, and S. Bujarbarua, Phys. Fluids 23, 2146 (1980).

    Article  ADS  Google Scholar 

  31. P. K. Shukla and A. A. Mamun, IEEE Trans. Plasma Sci. 29, 221 (2001).

    Article  ADS  Google Scholar 

  32. A. A. Mamun, M. N. Alam, A. K. Das, Z. Ahmed, and T. K. Datta, Phys. Scr. 58, 72 (1998).

    Article  ADS  Google Scholar 

  33. S. Sultana, I. Kourakis, and M. A. Hellberg, Plasma Phys. Controlled Fusion 54, 105016 (2012).

    Article  ADS  Google Scholar 

  34. S. Chandrasekhar, Philos. Mag. 11, 592 (1931).

    Article  Google Scholar 

  35. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 170, 405 (1935).

    Google Scholar 

  36. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects (Wiley, New York, 1983).

    Book  Google Scholar 

  37. M. G. Shah, Quantum Positron-Acoustic Waves in Dense Plasmas (LAP Lambert Academic, Saarbrücken, 2015).

    Google Scholar 

  38. M. G. Shah, M. R. Hossen, and A. A. Mamun, J. Plasma Phys. 81, 905810517 (2015).

    Article  Google Scholar 

  39. S. A. Ema, M. R. Hossen, and A. A. Mamun, Cotrib. Plasma Phys. 55, 596 (2015).

    Article  ADS  Google Scholar 

  40. M. R. Hossen, L. Nahar, and A. A. Mamun, Phys. Scr. 89, 105603 (2014).

    Article  ADS  Google Scholar 

  41. P. Chatterjee, D. K. Ghosh, and B. Sahu, Astrophys. Space Sci. 339, 261 (2012).

    Article  ADS  Google Scholar 

  42. A. Mannan and A. A. Mamun, Astrophys. Space Sci. 340, 109 (2012).

    Article  ADS  Google Scholar 

  43. W. F. El-Taibany and M. Wadati, Phys. Plasmas 14, 042302 (2007).

    Article  ADS  Google Scholar 

  44. M. S. Zobaer, N. Roy, and A. A. Mamun, J. Mod. Phys. 3, 755 (2012).

    Article  Google Scholar 

  45. U. K. Samanta, A. Saha, and P. Chatterjee, Phys. Plasmas 20, 052111 (2013).

    Article  ADS  Google Scholar 

  46. A. Saha, N. Pal, and P. Chatterjee, Phys. Plasmas 21, 102101 (2014).

    Article  ADS  Google Scholar 

  47. M. G. Shah, M. R. Hossen, and A. A. Mamun, Braz. J. Phys. 45, 219 (2014).

    Article  ADS  Google Scholar 

  48. M. Shahmansouri and H. Alinejad, Astrophys. Space Sci. 344, 463 (2013).

    Article  ADS  Google Scholar 

  49. Y. Wang, Z. Zhou, Y. Lu, X. Ni, J. Shen, and Y. Zhang, Commun. Theor. Phys. 51, 1121 (2009).

    Article  ADS  Google Scholar 

  50. W. Masood, B. Eliasson, and P. K. Shukla, Phys. Rev. E 81, 066401 (2010).

    Article  ADS  Google Scholar 

  51. M. R. Hossen, L. Nahar, S. Sultana, and A. A. Mamun, High Energy Density Phys. 13, 13 (2014).

    Article  ADS  Google Scholar 

  52. M. R. Hossen and A. A. Mamun, Braz. J. Phys. 44, 673 (2014).

    Article  ADS  Google Scholar 

  53. M. R. Hossen, S. A. Ema, and A. A. Mamun, Commun. Theor. Phys. 62, 888 (2014).

    Article  Google Scholar 

  54. M. R. Hossen and A. A. Mamun, Plasma Sci. Technol. 17, 177 (2015).

    Article  ADS  Google Scholar 

  55. N. Chakrabarti, A. Fruchtman, R. Arada, and Y. Marona, Phys. Lett. A 297, 92 (2002).

    Article  ADS  Google Scholar 

  56. D. Tskhakaya and S. Kuhn, J. Nucl. Mater. 337, 405 (2005).

    Article  ADS  Google Scholar 

  57. M. M. Haider, T. Ferdous, and S. S. Duha, Cent. Eur. J. Phys. 12, 701 (2014).

    Google Scholar 

  58. D. Koester and G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990).

    Article  ADS  Google Scholar 

  59. D. Koester and G. Chanmugam, Astron. Astrophys. Rev. 11, 33 (2002).

    Article  ADS  Google Scholar 

  60. H. M. Van Horn, Science 252, 384 (1991).

    Article  ADS  Google Scholar 

  61. A. Witze, Nature 510, 196 (2014).

    Article  ADS  Google Scholar 

  62. A. Vanderburg, J. A. Johnson, S. Rappaport, A. Bieryla, J. Irwin, J. A. Lewis, D. Kipping, W. R. Brown, P. Dufour, D. R. Ciardi, R. Angus, L. Schaefer, D. W. Latham, D. Charbonneau, C. Beichman, et al., Nature 526, 546 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Hossen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosen, B., Shah, M.G., Hossen, M.R. et al. Relativistic Ion-Acoustic Solitary Waves in a Magnetized Pair Ion Dense Plasma with Nuclei of Heavy Elements. Plasma Phys. Rep. 44, 976–985 (2018). https://doi.org/10.1134/S1063780X18100045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18100045

Navigation