Advertisement

Plasma Physics Reports

, Volume 44, Issue 9, pp 840–853 | Cite as

Evolution of the Solar Wind Speed with Heliocentric Distance and Solar Cycle. Surprises from Ulysses and Unexpectedness from Observations of the Solar Corona

  • O. V. KhabarovaEmail author
  • V. N. Obridko
  • R. A. Kislov
  • H. V. Malova
  • A. Bemporad
  • L. M. Zelenyi
  • V. D. Kuznetsov
  • A. F. Kharshiladze
Space Plasma

Abstract

An extensive analysis of Ulysses observations of the solar wind speed V from 1990 to 2008 is undertaken. It is shown that the evolution of V with heliocentric distance r depends substantially on both the heliolatitude and the solar activity cycle. Deviations from the predicted Parker’s profile of V(r) are so considerable that cannot be explained by a scarcity of measurements or other technical effects. In particular, the expected smooth growth of the solar wind speed with r is typical only for the solar activity maximum and for low heliolatitudes (lower than ±40°), while at high latitudes, there are two V(r) branches: growing and falling. In the solar activity maximum, V increases toward the solar pole in the North hemisphere only; however, in the South hemisphere, it decreases with heliolatitude. In the minimum of solar activity, the profile of V(r) at low heliolatitudes has a local minimum between 2 and 5 AU. This result is confirmed by the corresponding data from other spacecraft (Voyager 1 and Pioneer 10). Unexpected spatial variations in V at low heliolatitudes can be explained by the impact of coronal hole flows on the V(r) profile since the flows incline to the ecliptic plane. To reproduce the impact of spatial variations of V in the polar corona on the behavior of V at low heliolatitudes, a stationary one-fluid ideal MHD-model is developed with account of recent results on imagery of the solar wind speed in the corona up to 5.5 solar radii obtained on the basis of combined observations from SOHO/UVCS, LASCO, and Mauna Loa.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. N. Parker, Astrophys. J. 128, 664 (1958).ADSCrossRefGoogle Scholar
  2. 2.
    S. W. Y. Tam and T. Chang, Geophys. Res. Lett. 26, 3189 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    L. Adhikari, G. P. Zank, P. Hunana, D. Shiota, R. Bruno, Q. Hu, and D. Telloni, Astrophys. J. 841, 85 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    A. Bemporad, Astrophys. J. 846, 86 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    M. Tokumaru, H. Mori, T. Tanaka, T. Kondo, H. Takaba, and Y. Koyama, J. Geomagn. Geoelectr. 43, 619 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    J. M. Sokol, P. Swaczyna, M. Bzowski, and M. Tokumaru, Solar Phys. 290, 2589 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    D. J. McComas, S. J. Bame, and B. L. Barraclough, Geophys. Rev. Lett. 25, 1 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    D. J. McComas, H. A. Elliott, N. A. Schwadron, J. T. Gosling, R. M. Skoug, and B. E. Goldstein, Geophys. Rev. Lett. 30, 1517 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    O. V. Khabarova, Astron. Rep. 57, 844 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    G. Nisticò, G. Zimbardo, S. Patsourakos, V. Bothmer, and V. M. Nakariakov, Astron. Astrophys. 583, A127 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    A. J. Hundhausen, Coronal Expansion and Solar Wind (Physics and Chemistry in Space, Vol. 5) (Springer-Verlag, New York, 1972).CrossRefGoogle Scholar
  12. 12.
    S. L. McGregor, W. J. Hughes, C. N. Arge, D. Odstrcil, and N. A. Schwadron, J. Geophys. Res. 116, A03106 (2011).ADSGoogle Scholar
  13. 13.
    E. W. Maunder, Mon. Not. R. Astron. Soc. 64, 747 (1904).ADSCrossRefGoogle Scholar
  14. 14.
    R. Howard and P. A. Gilman, Astrophys. J. 307, 389 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    V. N. Obridko and B. D. Shelting, Astron. Rep. 47, 333 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    V. N. Obridko, D. D. Sokoloff, K. M. Kuzanyan, B. D. Shelting, and V. G. Zakharov, Mon. Not. R. Astron. Soc. 365, 827 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    O. Khabarova and V. Obridko, Astrophys. J. 761, 82 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    J. Zhang, J. Woch, and S. Solanki, Chinese J. Astron. Astrophys. 5, 531 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    J. D. Richardson, Ch. Wang, and K. I. Paularena, Adv. Space Res. 27, 471 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    R. A. Kislov, O. V. Khabarova, and H. V. Malova, J. Geophys. Res. 120, 8210 (2015).CrossRefGoogle Scholar
  21. 21.
    A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 1.Google Scholar
  22. 22.
    V. N. Obridko, E. V. Ivanov, A. Ozguc, A. Kilcik, and V. B. Yurchyshyn, Solar Phys. 281, 779 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    J. D. Nichols and S. W. H. Cowley, Ann. Geophys. 21, 1419 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    C. K. Goertz, D. E. Jones, B. A. Randall, E. J. Smith, and M. F. Thomsen, J. Geophys. Res. 81, 3393 (1976).ADSCrossRefGoogle Scholar
  25. 25.
    R. A. Burger, T. P. J. Kruger, M. Hitge, and N. E. Engelbrecht, Astrophys. J. 674, 511 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    O. V. Khabarova, H. V. Malova, R. A. Kislov, L. M. Zelenyi, V. N. Obridko, A. F. Kharshiladze, M. Tokumaru, J. M. Sokol, S. Grzedzielski, and K. Fujiki, Astrophys. J. 836, 108 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    V. Obridko, V. Formichev, A. F. Kharshiladze, I. Zhitnik, V. Slemzin, D. Hathaway, and S. T. Wu, Astron. Astrophys. Trans. 18, 819 (2000).ADSCrossRefGoogle Scholar
  28. 28.
    A. Wawrzaszek, M. Echim, W. M. Macek, and R. Bruno, Astrophys. J. Lett. 814, L19 (2015).Google Scholar
  29. 29.
    Yu. I. Ermolaev, N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Ermolaev, Kosm. Issl. 47, 1 (2009).Google Scholar
  30. 30.
    P. R. Gazis, A. Barnes, and J. D. Mihalov, Space Sci. Rev. 72, 117 (1995).ADSCrossRefGoogle Scholar
  31. 31.
    J. D. Richardson, K. I. Paularena, A. J. Lazarus, and J. W. Belcher, Geophys. Rev. Lett. 22, 1469 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    D. G. Mitchell, E. C. Roelof, and J. H. Wolfe, J. Geophys. Res. 86, 165 (1981).ADSCrossRefGoogle Scholar
  33. 33.
    L. F. Burlaga, Space Sci. Rev. 39, 255 (1984).ADSCrossRefGoogle Scholar
  34. 34.
    D. Odstrcil, Adv. Space Res. 32, 497 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Khabarova
    • 1
    Email author
  • V. N. Obridko
    • 1
  • R. A. Kislov
    • 1
    • 2
  • H. V. Malova
    • 2
    • 3
  • A. Bemporad
    • 4
  • L. M. Zelenyi
    • 2
  • V. D. Kuznetsov
    • 1
  • A. F. Kharshiladze
    • 1
  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave PropagationRussian Academy of SciencesTroitsk, MoscowRussia
  2. 2.Space Research InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Scobeltsyn Nuclear Physics InstituteMoscow State UniversityMoscowRussia
  4. 4.Istituto Nazionale di Astrofisica (INAF)Osservatorio Astrofisico di TorinoTorinoItaly

Personalised recommendations