Skip to main content
Log in

Nonlinear Wave Structures and Plasma−Dust Effects in the Earth’s Atmosphere

  • Ionospheric Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The interaction of charged dust grains with nonlinear vortical structures in the Earth’s atmosphere is analyzed. Certain aspects of the atmosphere−ionosphere interaction, in particular, mechanisms for the appearance of dust grains at ionospheric altitudes, are discussed. It is shown that, at certain altitudes, there are regions in the wavenumber space in which conditions leading to the excitation of acoustic−gravity waves are satisfied. The interaction of nonlinear acoustic−gravity waves with dust grains of meteoric origin at ionospheric altitudes, which leads to the mixing and redistribution of dust grains over the region where vortices exist, is investigated. The possibility of formation of vertical and horizontal dust flows in dusty ionospheric plasma as a result of modulational instability is analyzed. The dynamics of dust grains in dust devils frequently arising in the atmosphere above well-heated surfaces is modeled. The vortical structure of such a dust devil is characterized by a reduced pressure in the center, which facilitates the lifting of small dust grains from the surface. The formulated model is used to calculate the trajectories of dust grains in dust devils with allowance for the influence of the electric field generated in the vortex by colliding dust grains. The calculations show that dust devils play an important role in the transport of dust grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Kopnin, S. I. Popel, and T. I. Morozova, Plasma Phys. Rep. 41, 171 (2015).

    Article  ADS  Google Scholar 

  2. Yu. N. Besedina and S. I. Popel, Dokl. Earth Sci. 423A, 1475 (2008).

    Google Scholar 

  3. Yu. N. Izvekova, S. I. Popel, and B. B. Chen, J. Atmos. Sol.-Terr. Phys. 134, 41 (2015).

    Article  ADS  Google Scholar 

  4. Z. Ceplecha, J. Borovička, W. G. Elford, D. O. ReVelle, R. L. Hawkes, V. Porubčan, and M. Šimek, Space Sci. Rev. 84, 327 (1998).

    Article  ADS  Google Scholar 

  5. D. M. Hunten, R. P. Turco, and O. B. Toon, J. Atmos. Sci. 37, 1342 (1980).

    Article  ADS  Google Scholar 

  6. K. Amyx, Z. Sternovsky, S. Knappmiller, S. Robertson, M. Horanyi, and J. Gumbel, J. Atmos. Sol.-Terr. Phys. 70, 61 (2008).

    Article  ADS  Google Scholar 

  7. A. Hasegawa and P. K. Shukla, Phys. Lett. A 332, 82 (2004).

    Article  ADS  Google Scholar 

  8. D. J. Lacks and A. Levandovsky, J. Electrostat. 65, 107 (2007).

    Article  Google Scholar 

  9. Y. Zhai, S. A. Cummer, and W. M. Farrell, J. Geophys. Res.: Planets 111, E06016 (2006).

    Google Scholar 

  10. W. Horton, H. Miura, O. Onishchenko, L. Couedel, C. Arnas, A. Escarguel, S. Benkadda, and V. Fedun, J. Geophys. Res. Atmos. 121, 7197 (2016).

    Article  ADS  Google Scholar 

  11. Yu. N. Izvekova and S. I. Popel, Plasma Phys. Rep. 43, 1172 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Popel.

Additional information

Original Russian Text © Yu.N. Izvekova, S.I. Popel, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 9, pp. 747–751.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izvekova, Y.N., Popel, S.I. Nonlinear Wave Structures and Plasma−Dust Effects in the Earth’s Atmosphere. Plasma Phys. Rep. 44, 835–839 (2018). https://doi.org/10.1134/S1063780X18090052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18090052

Navigation