High-Power X-Ray Line Radiation of the Plasma Produced in a Collision of High-Energy Plasma Flows

Abstract

Results are presented from experimental studies of a pulsed source of soft X-ray (SXR) emission with photon energies in the range of 0.4–1 keV and an output energy of 2–10 kJ. SXR pulses with a duration of 10–15 μs were generated in collisions of two plasma flows propagating toward one another in a longitudinal magnetic field. The plasma flows with velocities of (2–4) × 107 cm/s and energy contents of 70–100 kJ were produced by two electrodynamic coaxial accelerators with pulsed gas injection. Nitrogen and neon, as well as their mixtures with deuterium, were used as working gases. The diagnostic equipment is described, and the experimental results obtained under different operating conditions are discussed. In particular, X-ray spectroscopy was used to study the high-temperature plasma produced in a collision of two plasma flows. The observed intensities of spectral lines are compared with the results of detailed kinetic calculations performed in a steady-state approximation. The calculations of the nitrogen and neon kinetics have shown that the electron temperature of a nitrogen plasma can be most conveniently determined from the intensity ratio of the resonance lines of He- and H-like nitrogen ions, while that of a neon plasma, from the intensity ratio between the resonance line of He-like Ne IX ions and the 3p−2s line of Li-like Ne VIII ions. In the experiments with plasma flows containing nitrogen ions, the electron temperature was found to be ≈120 eV, whereas in the experiments with plasma flows containing neon ions, it was 160–170 eV.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L. A. Artsimovich, S. Yu. Luk’yanov, I. M. Podgornyi, and S. A. Chuvatin, Sov. Phys. JETP 6, 1 (1957).

    ADS  Google Scholar 

  2. 2.

    J. W. Mather, P. J. Bottoms, J. P. Carpenter, A. H. Williams, and K. D. Ware, Phys. Fluids 12, 2343 (1969).

    ADS  Article  Google Scholar 

  3. 3.

    M. I. Pergament, in Physics and Application of Plasma Accelerators, Ed. by A. I. Morozov (Nauka i Tekhnika, Minsk, 1974), p. 261 [in Russian].

  4. 4.

    J. Jacoby, C. Bickes, D. H. Hoffmann, C. Hofmann, and J. Philipps, Fusion Eng. Des. 44, 331 (1999).

    Article  Google Scholar 

  5. 5.

    J. K. Ziemer and E. Y. Choueiri, Plasma Sources Sci. Technol. 10, 395 (2001).

    ADS  Article  Google Scholar 

  6. 6.

    I. N. Bogatu, S. A. Galkin, and J. S. Kim, J. Fusion Energy 27, 6 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    E. Y. Khautiev, P. S. Antsiferov, L. A. Dorokhin, K. N. Koshelev, and Y. V. Sidelnikov, Tech. Phys. 43, 1373 (1998).

    Article  Google Scholar 

  8. 8.

    A. M. Zhitlukhin, I. V. Ilyushin, V. M. Safronov, and Yu. V. Skvortsov, Sov. J. Plasma Phys. 8, 287 (1982).

    Google Scholar 

  9. 9.

    J. T. Cassibry, M. Stanic, and S. C. Hsu, Phys. Plasmas 20, 032706 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    C. Thoma, D. R. Welch, and S. C. Hsu, Phys. Plasmas 20, 082128 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    C. W. Hartman and J. H. Hammer, Phys. Rev. Lett. 48, 929 (1982).

    ADS  Article  Google Scholar 

  12. 12.

    A. E. Stepanov and V. V. Sidnev, Sov. J. Plasma Phys. 15, 580 (1989).

    Google Scholar 

  13. 13.

    J. Wiechula, A. Schorlein, M. Iberler, C. Hock, T. Manegold, B. Bohlender, and J. Jacoby, AIP Adv. 6, 075313 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    V. P. Bakhtin, G. C. Volkov, A. G. Es’kov, A. M. Zhitlukhin, D. A. Toporkov, and N. M. Umrikhin, XXXIX International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2012, Book of Abstracts, Paper M-48.

    Google Scholar 

  15. 15.

    N. Arkhipov, V. Bakhtin, S. Kurkin, V. Safronov, D. Toporkov, S. Vasenin, A. Zhitlukhin, P. Rockett, and J. Hunter, J. Nucl. Mater. 266−269, 751 (1999).

    Article  Google Scholar 

  16. 16.

    N. Arkhipov, V. Bakhtin, S. Kurkin, V. Safronov, D. Toporkov, S. Vasenin, H. Wuerz, and A. Zhitlukhin, Probl. At. Sci. Techol., No. 6, 99 (2000).

    Google Scholar 

  17. 17.

    A. G. Rousskikh, A. S. Zhigalin, V. I. Oreshkin, S. A. Chaikovsky, N. A. Labetskaya, and R. B. Baksht, Phys. Plasmas 18, 092707 (2011).

    ADS  Article  Google Scholar 

  18. 18.

    V. V. Aleksandrov, G. S. Volkov, E. V. Grabovskii, A. N. Gritsuk, N. I. Lakhtyushko, S. F. Medovshchikov, G. M. Oleinik, and E. V. Svetlov, Plasma Phys. Rep. 40, 135 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    B. Kuai, G. Wu, A. Qiu, L. Wang, P. Cong, and X. Wang, Laser Part. Beams 27, 569 (2009).

    ADS  Article  Google Scholar 

  20. 20.

    V. M. Vasiljev, V. I. Gervids, A. M. Zhitlukhin, A. P. Lotockiy, V. N. Lyashenko, Y. V. Skvortsov, V. M. Strunnikov, N. M. Umrichin, and S. S. Tzerevitinov, in Proceedings of the 5th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo, 1974 (IAEA, Vienna, 1975), p. 741.

    Google Scholar 

  21. 21.

    V. V. Sidnev, Yu. V. Skvortsov, V. G. Solov’eva, and N. M. Umrikhin, Sov. J. Plasma Phys. 10, 230 (1984).

    Google Scholar 

  22. 22.

    Yu. V. Skvortsov, Phys. Fluids B 4, 750 (1992).

    ADS  Article  Google Scholar 

  23. 23.

    K. Eidmann, T. Kishimoto, P. Herrmann, J. Mizui, R. Pakula, R. Sigel, and S. Witkowski, Laser Part. Beams 4, 521 (1986).

    ADS  Article  Google Scholar 

  24. 24.

    W. Schwanda and K. Eidmann, Appl. Opt. 31, 554 (1992).

    ADS  Article  Google Scholar 

  25. 25.

    http://www.andor.com/learning-academy/calibratedsoft-x-ray-spectrometer-characterization-of-thespectral-emission.

  26. 26.

    http://www.technoexan.ru/pdf/silicon_detector/fduk8uvsk.pdf.

  27. 27.

    I. E. Golovkin, P. R. Woodruff, D. R. Welch, B. V. Oliver, T. A. Mehlhorn, and R. B. Campbell, in Proceedings of the 3rd International Conference on Inertial Fusion Sciences and Applications, Monterey, 2003, p. 457.

    Google Scholar 

  28. 28.

    M. J. Bernstein and G. G. Comisar, J. Appl. Phys. 41, 729 (1970).

    ADS  Article  Google Scholar 

  29. 29.

    http://henke.lbl.gov/optical_constants.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Gavrilov.

Additional information

Original Russian Text © V.V. Gavrilov, A.G. Es’kov, A.M. Zhitlukhin, D.M. Kochnev, S.A. Pikuz, I.M. Poznyak, S.N. Ryazantsev, I.Yu. Skobelev, D.A. Toporkov, N.M. Umrikhin, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 9, pp. 730–739.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, V.V., Es’kov, A.G., Zhitlukhin, A.M. et al. High-Power X-Ray Line Radiation of the Plasma Produced in a Collision of High-Energy Plasma Flows. Plasma Phys. Rep. 44, 820–827 (2018). https://doi.org/10.1134/S1063780X18090039

Download citation