Plasma Physics Reports

, Volume 44, Issue 9, pp 820–827 | Cite as

High-Power X-Ray Line Radiation of the Plasma Produced in a Collision of High-Energy Plasma Flows

  • V. V. GavrilovEmail author
  • A. G. Es’kov
  • A. M. Zhitlukhin
  • D. M. Kochnev
  • S. A. Pikuz
  • I. M. Poznyak
  • S. N. Ryazantsev
  • I. Yu. Skobelev
  • D. A. Toporkov
  • N. M. Umrikhin
Plasma Radiation


Results are presented from experimental studies of a pulsed source of soft X-ray (SXR) emission with photon energies in the range of 0.4–1 keV and an output energy of 2–10 kJ. SXR pulses with a duration of 10–15 μs were generated in collisions of two plasma flows propagating toward one another in a longitudinal magnetic field. The plasma flows with velocities of (2–4) × 107 cm/s and energy contents of 70–100 kJ were produced by two electrodynamic coaxial accelerators with pulsed gas injection. Nitrogen and neon, as well as their mixtures with deuterium, were used as working gases. The diagnostic equipment is described, and the experimental results obtained under different operating conditions are discussed. In particular, X-ray spectroscopy was used to study the high-temperature plasma produced in a collision of two plasma flows. The observed intensities of spectral lines are compared with the results of detailed kinetic calculations performed in a steady-state approximation. The calculations of the nitrogen and neon kinetics have shown that the electron temperature of a nitrogen plasma can be most conveniently determined from the intensity ratio of the resonance lines of He- and H-like nitrogen ions, while that of a neon plasma, from the intensity ratio between the resonance line of He-like Ne IX ions and the 3p−2s line of Li-like Ne VIII ions. In the experiments with plasma flows containing nitrogen ions, the electron temperature was found to be ≈120 eV, whereas in the experiments with plasma flows containing neon ions, it was 160–170 eV.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Artsimovich, S. Yu. Luk’yanov, I. M. Podgornyi, and S. A. Chuvatin, Sov. Phys. JETP 6, 1 (1957).ADSGoogle Scholar
  2. 2.
    J. W. Mather, P. J. Bottoms, J. P. Carpenter, A. H. Williams, and K. D. Ware, Phys. Fluids 12, 2343 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    M. I. Pergament, in Physics and Application of Plasma Accelerators, Ed. by A. I. Morozov (Nauka i Tekhnika, Minsk, 1974), p. 261 [in Russian].Google Scholar
  4. 4.
    J. Jacoby, C. Bickes, D. H. Hoffmann, C. Hofmann, and J. Philipps, Fusion Eng. Des. 44, 331 (1999).CrossRefGoogle Scholar
  5. 5.
    J. K. Ziemer and E. Y. Choueiri, Plasma Sources Sci. Technol. 10, 395 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    I. N. Bogatu, S. A. Galkin, and J. S. Kim, J. Fusion Energy 27, 6 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    E. Y. Khautiev, P. S. Antsiferov, L. A. Dorokhin, K. N. Koshelev, and Y. V. Sidelnikov, Tech. Phys. 43, 1373 (1998).CrossRefGoogle Scholar
  8. 8.
    A. M. Zhitlukhin, I. V. Ilyushin, V. M. Safronov, and Yu. V. Skvortsov, Sov. J. Plasma Phys. 8, 287 (1982).Google Scholar
  9. 9.
    J. T. Cassibry, M. Stanic, and S. C. Hsu, Phys. Plasmas 20, 032706 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    C. Thoma, D. R. Welch, and S. C. Hsu, Phys. Plasmas 20, 082128 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    C. W. Hartman and J. H. Hammer, Phys. Rev. Lett. 48, 929 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    A. E. Stepanov and V. V. Sidnev, Sov. J. Plasma Phys. 15, 580 (1989).Google Scholar
  13. 13.
    J. Wiechula, A. Schorlein, M. Iberler, C. Hock, T. Manegold, B. Bohlender, and J. Jacoby, AIP Adv. 6, 075313 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    V. P. Bakhtin, G. C. Volkov, A. G. Es’kov, A. M. Zhitlukhin, D. A. Toporkov, and N. M. Umrikhin, XXXIX International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2012, Book of Abstracts, Paper M-48.Google Scholar
  15. 15.
    N. Arkhipov, V. Bakhtin, S. Kurkin, V. Safronov, D. Toporkov, S. Vasenin, A. Zhitlukhin, P. Rockett, and J. Hunter, J. Nucl. Mater. 266−269, 751 (1999).CrossRefGoogle Scholar
  16. 16.
    N. Arkhipov, V. Bakhtin, S. Kurkin, V. Safronov, D. Toporkov, S. Vasenin, H. Wuerz, and A. Zhitlukhin, Probl. At. Sci. Techol., No. 6, 99 (2000).Google Scholar
  17. 17.
    A. G. Rousskikh, A. S. Zhigalin, V. I. Oreshkin, S. A. Chaikovsky, N. A. Labetskaya, and R. B. Baksht, Phys. Plasmas 18, 092707 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    V. V. Aleksandrov, G. S. Volkov, E. V. Grabovskii, A. N. Gritsuk, N. I. Lakhtyushko, S. F. Medovshchikov, G. M. Oleinik, and E. V. Svetlov, Plasma Phys. Rep. 40, 135 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    B. Kuai, G. Wu, A. Qiu, L. Wang, P. Cong, and X. Wang, Laser Part. Beams 27, 569 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    V. M. Vasiljev, V. I. Gervids, A. M. Zhitlukhin, A. P. Lotockiy, V. N. Lyashenko, Y. V. Skvortsov, V. M. Strunnikov, N. M. Umrichin, and S. S. Tzerevitinov, in Proceedings of the 5th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo, 1974 (IAEA, Vienna, 1975), p. 741.Google Scholar
  21. 21.
    V. V. Sidnev, Yu. V. Skvortsov, V. G. Solov’eva, and N. M. Umrikhin, Sov. J. Plasma Phys. 10, 230 (1984).Google Scholar
  22. 22.
    Yu. V. Skvortsov, Phys. Fluids B 4, 750 (1992).ADSCrossRefGoogle Scholar
  23. 23.
    K. Eidmann, T. Kishimoto, P. Herrmann, J. Mizui, R. Pakula, R. Sigel, and S. Witkowski, Laser Part. Beams 4, 521 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    W. Schwanda and K. Eidmann, Appl. Opt. 31, 554 (1992).ADSCrossRefGoogle Scholar
  25. 25. Scholar
  26. 26. Scholar
  27. 27.
    I. E. Golovkin, P. R. Woodruff, D. R. Welch, B. V. Oliver, T. A. Mehlhorn, and R. B. Campbell, in Proceedings of the 3rd International Conference on Inertial Fusion Sciences and Applications, Monterey, 2003, p. 457.Google Scholar
  28. 28.
    M. J. Bernstein and G. G. Comisar, J. Appl. Phys. 41, 729 (1970).ADSCrossRefGoogle Scholar
  29. 29. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Gavrilov
    • 1
    Email author
  • A. G. Es’kov
    • 1
  • A. M. Zhitlukhin
    • 1
  • D. M. Kochnev
    • 1
  • S. A. Pikuz
    • 2
  • I. M. Poznyak
    • 1
  • S. N. Ryazantsev
    • 2
  • I. Yu. Skobelev
    • 2
  • D. A. Toporkov
    • 1
  • N. M. Umrikhin
    • 1
  1. 1.Troitsk Institute for Innovation and Fusion ResearchTroitsk, MoscowRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations