Advertisement

Plasma Physics Reports

, Volume 44, Issue 8, pp 723–728 | Cite as

Dusty Plasma near the Martian Satellite Deimos

  • S. I. Popel
  • A. P. Golub’
  • L. M. Zelenyi
Space Plasma

Abstract

The formation of dusty plasma in the near-surface layer above the illuminated part of the Deimos, the satellite of Mars, due to photoelectric and electrostatic processes is analyzed. Using a physicomathematical model self-consistently describing the densities of photoelectrons and dust grains above the illuminated part of Deimos, the distribution function of photoelectrons near its surface is calculated and the altitude dependences of the electric field, as well as of the number density, charge, and size of dust grains, are determined. It is noted that, due to the lower gravity, substantially larger grains are lifted above the surface of Deimos compared to those lifted above the Moon’s surface. In this case, adhesion, which is believed to significantly hamper the detachment of dust grains from the lunar surface, plays a substantially smaller role on Deimos.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Thomas, Icarus 40, 223 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    P. Thomas and J. Veverka, Icarus 42, 234 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    A. Zakharov, M. Horányi, P. Lee, O. Witasse, and F. Cipriani, Planet. Space Sci. 102, 171 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    T. J. Stubbs, R. R. Vondrak, and W. M. Farrell, Adv. Space Res. 37, 59 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    Z. Sternovsky, P. Chamberlin, M. Horányi, S. Robertson, and X. Wang, J. Geophys. Res. 113, A10104 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    T. J. Stubbs, D. A. Glenar, W. M. Farrell, R. R. Vondrak, M. R. Collier, J. S. Halekas, and G. T. Delory, Planet. Space Sci. 59, 1659 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    A. P. Golub’, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, Yu. N. Izvekova, S. I. Kopnin, and S. I. Popel, JETP Lett. 95, 182 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    S. I. Popel, S. I. Kopnin, A. P. Golub’, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, and Yu. N. Izvekova, Solar Syst. Res. 47, 419 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    E. A. Lisin, V. P. Tarakanov, O. F. Petrov, S. I. Popel’, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, and V. E. Fortov, JETP Lett. 98, 664 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    S. I. Popel, A. P. Golub’, Yu. N. Izvekova, V. V. Afonin, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, E. A. Lisin, and O. F. Petrov, JETP Lett. 99, 115 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    T. I. Morozova, S. I. Kopnin, and S. I. Popel, Plasma Phys. Rep. 41, 799 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Phys. Plasmas 22, 123701 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Plasma Phys. Rep. 42, 543 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    S. I. Popel, A. P. Golub’, E. A. Lisin, Yu. N. Izvekova, B. Atamaniuk, G. G. Dol’nikov, A. V. Zakharov, and L. M. Zelenyi, JETP Lett. 103, 563 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    S. I. Popel, A. P. Golub’, L. M. Zelenyi, and M. Horányi, JETP Lett. 105, 635 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    S. I. Popel and T. I. Morozova, Plasma Phys. Rep. 43, 566 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    S. I. Popel, A. P. Golub’, A. V. Zakharov, and L. M. Zelenyi, JETP Lett. 106, 485 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    S. Soter, Report No. 462 (Cornell Center for Radiophysics and Space Research Physics, Ithaca, NY, 1971).Google Scholar
  19. 19.
    E. Walbridge, J. Geophys. Res. 78, 3668 (1973).ADSCrossRefGoogle Scholar
  20. 20.
    R. F. Willis, M. Anderegg, B. Feuerbacher, and B. Fitton, in Photon and Particle Interactions with Surfaces in Space, Ed. by R. J. L. Grard (Reidel, Dordrecht, 1973), p.389.Google Scholar
  21. 21.
    T. V. Losseva, S. I. Popel, A. P. Golub’, Yu. N. Izvekova, and P. K. Shukla, Phys. Plasmas 19, 013703 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    E. K. Kolesnikov and A. S. Manuilov, Astron. Rep. 26, 602 (1982).Google Scholar
  23. 23.
    R. J. L. Grard and J. K. E. Tunaley, J. Geophys. Res. 76, 2498 (1971).ADSCrossRefGoogle Scholar
  24. 24.
    E. K. Kolesnikov and A. B. Yakovlev, Solar Syst. Res. 31, 62 (1997).ADSGoogle Scholar
  25. 25.
    J. E. Colwell, S. Batiste, M. Horányi, S. Robertson, and S. Sture, Rev. Geophys. 45, RG2006 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    C. M. Hartzell and D. J. Scheeres, Planet. Space Sci. 59, 1758 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    A. V. Krivov and D. P. Hamilton, Icarus 128, 335 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. I. Popel
    • 1
    • 2
    • 3
  • A. P. Golub’
    • 1
  • L. M. Zelenyi
    • 1
    • 2
    • 3
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations