Skip to main content
Log in

First-Principles Calculations on the Wettability of Li Atoms on the (111) Surfaces of W and Mo Substrates

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Comprehension over the interactions between lithium (Li) atoms and tungsten (W) or molybdenum (Mo) are crucial to improve the wettability of the flowing liquid Li, a candidate plasma facing material in fusion devices, on the surfaces of supported substrate metals. In this work, we utilize first-principles density- functional theory calculations to figure out the adsorption and diffusion properties of Li atoms and clusters on the (111) surfaces of W and Mo. It is found that single Li atom in the fcc-hollow site is the most favored configuration. For the multiple Li atoms adsorption on the substrates, the planar construction is more stable than the stacking one. The electronic structure analysis shows that the lateral interaction between Li atoms is very weak and the binding between Li atom and the substrates is strong; therefore, it can be inferred that the liquid Li is “wetting” intrinsically on the surfaces of the W and Mo substrates. We also investigate the effect of defects (vacancy, H, C, and O) and find that the preexisted vacancy in the substrates has little effect on the wettability; however, the impurities (especially O atom) will hinder the movement of Li atoms on the metal substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Lipschultz, D. A. Pappas, B. LaBombard, J. E. Rice, D. Smith, and S. J. Wukitch, Nucl. Fusion 41, 585 (2001).

    Article  ADS  Google Scholar 

  2. J. N. Brooks, J. P. Allain, D. G. Whyte, R. Ochoukov, and B. Lipschultz, J. Nucl. Mater. 415, S112 (2011).

    Article  ADS  Google Scholar 

  3. C. P. C. Wong, E. Chin, T. W. Petrie, E. E. Reis, M. Tillack, X. Wang, I. Sviatoslavsky, S. Malang, and D. K. Sze, Fusion Eng. Des. 38, 115 (1997).

    Article  Google Scholar 

  4. R. Dux, V. Bobkov, A. Herrmann, A. Janzer, A. Kallenbach, R. Neu, M. Mayer, H. W. Müller, R. Pugno, T. Pütterich, V. Rohde, A. C. C. Sips, and ASDEX Upgrade Team, J. Nucl. Mater. 390, 858 (2009).

    Article  ADS  Google Scholar 

  5. S. C. Jardin, C. G. Bathke, D. A. Ehst, S. M. Kaye, C. E. Kessel, Jr, B. J. Lee, T. K. Mau, J. Menard, R. Miller, and F. Najmabadi, Fusion Eng. Des. 48, 281 (2000).

    Article  Google Scholar 

  6. J. W. Coenen, G. De Temmerman, G. Federici, V. Philipps, G. Sergienko, G. Strohmayer, A. Terra, B. Unterberg, T. Wegener, and D. C. M. Van den Bekerom, Phys. Scr. T159, 014037 (2014).

    Article  ADS  Google Scholar 

  7. D. F. Johnson and E. A. Carter, J. Mater. Res. 25, 315 (2010).

    Article  ADS  Google Scholar 

  8. B. Lipschultz, J. W. Coenen, H. S. Barnard, N. T. Howard, M. L. Reinke, D. G. Whyte, and G. M. Wright, Nucl. Fusion 52, 123002 (2012).

    Article  ADS  Google Scholar 

  9. M. J. Baldwin and R. P. Doerner, J. Nucl. Mater. 404, 165 (2010).

    Article  ADS  Google Scholar 

  10. R. E. Nygren, D. F. Cowgill, M. A. Ulrickson, B. E. Nelson, P. J. Fogarty, T. D. Rognlien, M. E. Rensink, A. Hassanein, S. S. Smolentsev, and M. Kotschenreuther, Fusion Eng. Des. 72, 223 (2004).

    Article  Google Scholar 

  11. R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, A. Sashala Naik, R. Mitteau, M. Sugihara, B. Bazylev, and P. C. Stangeby, J. Nucl. Mater. S48, 438 (2013).

    Google Scholar 

  12. L. K. Keys, J. P. Smith, and J. Moteff, Phys. Rev. 176, 851 (1968).

    Article  ADS  Google Scholar 

  13. C. H. Skinner, R. Sullenberger, B. E. Koel, M. A. Jaworski, and H. W. Kugel, J. Nucl. Mater. 438, S647 (2013).

    Article  ADS  Google Scholar 

  14. R. Majeski, T. Abrams, D. Boyle, E. Granstedt, J. Hare, C. M. Jacobson, R. Kaita, T. Kozub, B. LeBlanc, D. P. Lundberg, M. Lucia, E. Merino, J. Schmitt, D. Stotler, T. M. Biewer, et al., Phys. Plasmas 20, 056103 (2013).

    Article  ADS  Google Scholar 

  15. R. Kaita, R. Majeski, T. Gray, H. Kugel, D. Mansfield, J. Spaleta, J. Timberlake, L. Zakharov, R. Doerner, T. Lynch, R. Maingi, and V. Soukhanovskii, Phys. Plasmas 14, 056111 (2007).

    Article  ADS  Google Scholar 

  16. J. Ren, G. Z. Zuoa, J. S. Hua, Z. Suna, J. G. Li, L. E. Zakharov, D. N. Ruzic, and W. Y. Xu, Fusion Eng. Des. 102, 36 (2016).

    Article  Google Scholar 

  17. P. Fiflis, A. Press, W. Xu, D. Andruczyk, D. Curreli, and D. N. Ruzic, Fusion Eng. Des. 89, 2827 (2014).

    Article  Google Scholar 

  18. X. Sun, S. Xiao, H. Deng, and W. Hu, Fusion Eng. Des 117, 188 (2017).

    Article  Google Scholar 

  19. J. R. Vella, M. Chen, S. Fürstenberg, F. H. Stillinger, E. A. Carter, P. G. Debenedetti, and A. Z. Panagiotopoulos, Nucl. Fusion 57, 11 (2017).

    Article  Google Scholar 

  20. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 48, 4978 (1993).

    Article  ADS  Google Scholar 

  21. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  22. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  23. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901(2000).

    Article  ADS  Google Scholar 

  25. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990).

    Google Scholar 

  26. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976).

    MATH  Google Scholar 

  27. D. E. Gray, American Institute of Physics Handbook (McGraw-Hill, New York, 1957).

    MATH  Google Scholar 

  28. P. Ehrhart, P. Jung, and H. Schultz. Atomic Defects in Metals (Springer, Berlin, 1991).

    Google Scholar 

  29. I. Yakovkin, Eur. J. Phys. B 44, 551 (2005).

    Article  ADS  Google Scholar 

  30. L. Ventelon, F. Willaime, C. C. Fu, M. Heran, and I. Ginoux, J. Nucl. Mater. 425, 16 (2012).

    Article  ADS  Google Scholar 

  31. W. B. Pearson, Handbook of Lattice Spacing and Structures of Metals (Pergamon, Oxford, 1967).

    Google Scholar 

  32. I. N. Yakovkin, M. Kuchowicz, R. Szukiewicz, and J. Kolaczkiewicz, Surf. Sci. Lett. 600, 240 (2006).

    Article  ADS  Google Scholar 

  33. A. Kiejna and R. M. Nieminen, Phys. Rev. B 69, 235424 (2004).

    Article  ADS  Google Scholar 

  34. J. G. Che, C. T. Chan, W. E. Jian, and T. C. Leung, Phys. Rev. B 57, 1875 (1998).

    Article  ADS  Google Scholar 

  35. E. Lassner and W. D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic, New York, 1999).

    Book  Google Scholar 

  36. K. Heinola and T. Ahlgren, J. Appl. Phys. 107, 113531 (2010).

    Article  ADS  Google Scholar 

  37. X. D. Dai, J. H. Li, and Y. Kong, Phys. Rev. B 75, 052102 (2007).

    Article  ADS  Google Scholar 

  38. M. C. Marinica1, L. Ventelon, M. R. Gilbert, L. Proville, S. L. Dudarev, J. Marian, G. Bencteux, and F. Willaime, J. Phys. Condens. Mat. 25, 395502 (2013).

    Article  Google Scholar 

  39. L. Brewer, Report No. 3720 (Lawrence Berkeley National Laboratory, Berkeley, CA, 1973).

    Google Scholar 

  40. H. Park, M. R. Fellinger, T. J. Lenosky, W. W. Tipton, D. R. Trinkle, S. P. Rudin, C. Woodward, J. W. Wilkins, and R. G. Hennig, Phys. Rev. B 85, 214121 (2012).

    Article  ADS  Google Scholar 

  41. Q. Q. Sun, T. L. Yang, L. Yang, S. M. Peng, X. G. Long, X. S. Zhou, X. T. Zu, and F. Gao, Model. Simul. Mater. Sci. Eng. 24, 045018 (2016).

    Article  ADS  Google Scholar 

  42. T. Gorecki, Z. Metallkde 65, 426 (1974).

    Google Scholar 

  43. L. T. Kong, X. Y. Li, W. S. Lai, J. B. Liu, and B. X. Liu, J. Appl. Phys. 41, 4503 (2002).

    Article  Google Scholar 

  44. K. Maier, M. Peo, B. Saile, H. E. Schaefer, and A. Seeger, Philos. Mag. A 40, 701 (1979).

    Article  ADS  Google Scholar 

  45. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (M.I.T. Presss, Cambridge, MA, 1971).

    Google Scholar 

  46. D. I. Bolef and J. D. Klerk, J. Appl. Phys. 33, 2311 (1962).

    Article  ADS  Google Scholar 

  47. G. D. Samolyuk, Y. N. Osetsky, and R. E. Stoller, J. Phys. Condens. Mat. 25, 025403 (2013).

    Article  ADS  Google Scholar 

  48. M. Muzyk, D. Nguyen-Manh, K. J. Kurzydlowski, N. L. Baluc, and S. L. Dudarev, Phys. Rev. B 84, 104115 (2011).

    Article  ADS  Google Scholar 

  49. P. Bujard, PhD Thesis (University of Geneva, Geneva, 1982).

    Google Scholar 

  50. M. Chen, J. Roszell, E. V. Scoullos, C. Riplinger, B. E. Koel, and E. A. Carter. J. Phys. Chem. B 120, 6110 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Deng.

Additional information

Published in Russian in Fizika Plazmy, 2018, Vol. 44, No. 7, pp. 601–610.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, S., Li, G., Liu, Z. et al. First-Principles Calculations on the Wettability of Li Atoms on the (111) Surfaces of W and Mo Substrates. Plasma Phys. Rep. 44, 692–701 (2018). https://doi.org/10.1134/S1063780X18070097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18070097

Navigation