Skip to main content
Log in

Study of Electromagnetic Electron Cyclotron Waves for Kappa Distribution with AC Field in the Magnetosphere of Saturn

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Parallel propagating electromagnetic electron cyclotron (EMEC) waves in the extended plasma sheet (~12RS) and in the outer magnetosphere (~18RS) of Saturn have been studied. A dispersion relation for parallel propagating relativistic EMEC waves has been applied to the magnetosphere of Saturn, and comparisons have been made with the data of Voyager 1 at these radial distances. The detailed investigations for EMEC waves have been done in the presence of the perpendicular AC electric field, using the kappa distribution function. The relativistic temporal growth rate is calculated by the method of characteristic solution with the data provided by Voyager 1. The effect of the suprathermal electron density, temperature anisotropy, frequency of AC electric field, thermal energy of ions, and relativistic factor on the temporal growth rate of EMEC wave emission has been studied. The simulation results show that the growth of parallel propagating EMEC waves is significantly affected by variations in the temperature anisotropy, electron density, ion thermal energy, and relativistic factor in both the extended plasma sheet and the outer magnetosphere of Saturn. The temperature anisotropy (T⊥/T), ion thermal energy (KBTi), and electron density (n0) have been found to be a major source of free energy for parallel propagating EMEC waves in both regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Horne and R. M. Thorne, Geophys. Res. Lett. 25, 3011 (1998).

    Article  ADS  Google Scholar 

  2. D. Summers, R. M. Thorne, and F. Xiao, J. Geophys. Res. 103, 20487 (1998).

    Article  ADS  Google Scholar 

  3. D. Summers, B. Ni, and N. P. Meredith, J. Geophys. Res. 112, A04207 (2007).

    ADS  Google Scholar 

  4. R. M. Thorne, Geophys. Res. Lett. 37, L22107 (2010).

    Article  ADS  Google Scholar 

  5. D. A. Gurnett, W. S. Kurth, G. B. Hospodarsky, A. M. Persoon, T. F. Averkamp, B. Cecconi, A. Lecacheux, P. Zarka, P. Canu, N. Cornilleau-Wehrlin, P. Galopeau, A. Roux, C. Harvey, P. Louarn, R. Bostrom, et al., Science 307, 1255 (2005).

    Article  ADS  Google Scholar 

  6. G. B. Hospodarsky, T. F. Averkamp, W. S. Kurth, D. A. Gurnett, J. D. Menietti, O. Santolok, and M. K. Dougherty, J. Geophys. Res. 113, A12206 (2008).

    Article  ADS  Google Scholar 

  7. E. Eviator and J. D. Richardson, Ann. Geophys. 8, 725(1990).

    ADS  Google Scholar 

  8. J. D. Menietti, O. Santolik, A. M. Rymer, G. B. Hospodarsky, A. M. Persoon, D. A. Gurnett, A. J. Coates, and D. T. Young, J. Geophys. Res. 113, A05213 (2008).

    Article  ADS  Google Scholar 

  9. J. D. Menietti, Y. Y Shprits., R. B. Horne, E. E. Woodfield, G. B. Hospodarsky, and D. A. Gurnett, J. Geophys. Res. 117, A12214 (2012).

    Article  ADS  Google Scholar 

  10. R. B. Horne and R. M. Thorne, J. Geophys. Res. 105, 5391 (2000).

    Article  ADS  Google Scholar 

  11. R. M. Thorne, B. Ni, X. Tao, R. B. Horne, and N. P. Meredith, Nature 467, 943 (2010).

    Article  ADS  Google Scholar 

  12. S. Y. Ye, J. D. Menietti, G. Fischer, Z. Wang, B. Cecconi, D. A. Gurnett, and W. S. Kurth, J. Geophys. Res. 115, A08228 (2010).

    ADS  Google Scholar 

  13. R. S. Pandey and R. Kaur, Adv. Space Res. 56, 714 (2015).

    Article  ADS  Google Scholar 

  14. G. A. Paulikas and J. B. Blake, in Quantitative Modeling of the Magnetospheric Processes (Geophysical Monograph. Series, Vol. 21) (AGU, Washington, DC, 1979), p. 180.

    Google Scholar 

  15. D. N. Baker, J. B. Blake, R. W. Klebesadel, and P. R. Higbie, J. Geophys. Res. 91, 4265 (1986).

    Article  ADS  Google Scholar 

  16. G. B. Hospodarsky, in Proceedings of European Planetary Science Congress, Potsdam, 2007.

    Google Scholar 

  17. Y. Miyoshi, A. Morioka, H. Misawa, T. Obara, T. Nagai, and Y. Kasahara, J. Geophys. Res. 108, 1004 (2003).

    Article  Google Scholar 

  18. M. Fujimoto and A. Nishida, J. Geophys. Res. 95, 3841(1990).

    Article  ADS  Google Scholar 

  19. D. Summers and Y. Omura, Geophys. Res. Lett. 34, L24205 (2007).

    Article  ADS  Google Scholar 

  20. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  21. A. B. Galvin, G. Gloeckler, F. M. Ipavich, C. M. Shafer, J. Geiss, and K. Ogilvie, Adv. Space Res. 13, 75 (1993).

    Article  ADS  Google Scholar 

  22. M. Maksimovic, V. Pierrard, and P. Riley, Geophys. Res. Lett. 24, 1151 (1997).

    Article  ADS  Google Scholar 

  23. D. Summers, S. Xue, and R. M. Thorne, Phys. Plasmas 1, 2012 (1994).

    Article  ADS  Google Scholar 

  24. S. Xue, R. M. Thorne, and D. Summers, J. Geophys. Res. 9, 17475 (1993).

    Article  ADS  Google Scholar 

  25. J. F. Tang, D. J. Wu, and Y. H. Yan, Astrophys. J. 745, 134 (2012).

    Article  ADS  Google Scholar 

  26. V. Pierrard and M. Lazar, Solar Phys. 267, 153 (2010).

    Article  ADS  Google Scholar 

  27. F. Xiao, Plasma Phys. Controlled Fusion 48, 203 (2006).

    Google Scholar 

  28. R. S. Pandey and R. Kaur, Prog. Electromag. Res. B 45, 337 (2012).

    Article  Google Scholar 

  29. M. A. Hellberg and R. L. Mace, Phys. Plasmas 9, 1495 (2002).

    Article  ADS  Google Scholar 

  30. D. Summers and R. M. Thorne, Phys. Fluids B 3, 1835(1991).

    Article  ADS  Google Scholar 

  31. D. A. Gurnett, W. S. Kurth, and F. L. Scarf, Icarus 53, 255 (1983).

    Article  ADS  Google Scholar 

  32. C. G. Maclennan, L. J. Lanzerotti, and S. M. Krimigis, J. Geophys. Res. 88, 8817 (1983).

    Article  ADS  Google Scholar 

  33. M. Lazar, S. Poedts, and M. Michno, Astron. Astrophys. 554, A64 (2013).

    Article  ADS  Google Scholar 

  34. A. M. Rymer, B. H. Mauk, T. W. Hill, C. Paranicas, N. André, E. C. Sittler, Jr., D. G. Mitchell, H. T. Smith, R. E. Johnson, A. J. Coates, D. T. Young, S. J. Bolton, M. F. Thomsen, and M. K. Dougherty, J. Geophys. Res. 112, A02201 (2007).

    Article  ADS  Google Scholar 

  35. V. Krivenski and A. Orefice, J. Plasma Phys. 30, 125 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Pandey.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandpal, P., Pandey, R.S. Study of Electromagnetic Electron Cyclotron Waves for Kappa Distribution with AC Field in the Magnetosphere of Saturn. Plasma Phys. Rep. 44, 568–575 (2018). https://doi.org/10.1134/S1063780X18060041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18060041

Navigation