Skip to main content
Log in

Linear Transformation of Electromagnetic Wave Beams of the Electron-Cyclotron Range in Toroidal Magnetic Configurations

  • Oscillations and Waves in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The field structure of quasi-optical wave beams tunneled through the evanescence region in the vicinity of the plasma cutoff in a nonuniform magnetoactive plasma is analyzed. This problem is traditionally associated with the process of linear transformation of ordinary and extraordinary waves. An approximate analytical solution is constructed for a rather general magnetic configuration applicable to spherical tokamaks, optimized stellarators, and other magnetic confinement systems with a constant plasma density on magnetic surfaces. A general technique for calculating the transformation coefficient of a finite-aperture wave beam is proposed, and the physical conditions required for the most efficient transformation are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginsburg, J. Phys. 7, 289 (1943).

    Google Scholar 

  2. V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 18, 487 (1948).

    Google Scholar 

  3. H. P. Laqua, Plasma Phys. Controlled Fusion 49, R1 (2007).

    Article  ADS  Google Scholar 

  4. J. Preinhaelter and V. Kopecký, J. Plasma Phys. 10, 1 (1973).

    Article  ADS  Google Scholar 

  5. J. Preinhaelter, Czech. J. Phys. B 25, 39 (1975).

    Article  ADS  Google Scholar 

  6. T. Maekawa, S. Tanaka, Y. Terumichi, and Y. Hamada, Phys. Rev. Lett. 40, 1379 (1978).

    Article  ADS  Google Scholar 

  7. E. Mjølhus, J. Plasma Phys. 31, 7 (1984).

    Article  ADS  Google Scholar 

  8. M. D. Tokman, Sov. J. Plasma Phys. 10, 689 (1985).

    ADS  Google Scholar 

  9. F. R. Hansen, J. P. Lynov, C. Maroli, and V. Petrillo, J. Plasma Phys. 39, 319 (1988).

    Article  ADS  Google Scholar 

  10. A. V. Timofeev, Plasma Phys. Rep. 26, 820 (2000).

    Article  ADS  Google Scholar 

  11. A. V. Timofeev, Phys. Usp. 47, 555 (2004).

    Article  ADS  Google Scholar 

  12. M. A. Balakina, A. G. Shalashov, E. D. Gospodchikov, and O. B. Smolyakova, Radiophys. Quantum Electron. 49, 617 (2006).

    Article  ADS  Google Scholar 

  13. A. G. Shalashov and E. D. Gospodchikov, Plasma Phys. Controlled Fusion 52, 025007 (2010).

    Article  ADS  Google Scholar 

  14. H. Weitzner, Phys. Plasmas 11, 866 (2004).

    Article  ADS  Google Scholar 

  15. E. D. Gospodchikov, A. G. Shalashov, and E. V. Suvorov, Plasma Phys. Controlled Fusion 48, 869 (2006).

    Article  ADS  Google Scholar 

  16. A. G. Shalashov, E. D. Gospodchikov, and E. V. Suvorov, JETP 103, 480 (2006).

    Article  ADS  Google Scholar 

  17. A. Yu. Popov and A. D. Piliya, Plasma Phys. Rep. 33, 109 (2007).

    Article  ADS  Google Scholar 

  18. E. D. Gospodchikov, A. G. Shalashov, and E. V. Suvorov, Fusion Sci. Technol. 53, 261 (2008).

    Article  Google Scholar 

  19. A. Yu. Popov, Plasma Phys. Controlled Fusion 49, 1599 (2007).

    Article  ADS  Google Scholar 

  20. A. G. Shalashov and E. D. Gospodchikov, Plasma Phys. Controlled Fusion 50, 045005 (2008).

    Article  ADS  Google Scholar 

  21. A. Yu. Popov, Plasma Phys. Controlled Fusion 52, 035008 (2010).

    Article  ADS  Google Scholar 

  22. A. G. Shalashov and E. D. Gospodchikov, Plasma Phys. Controlled Fusion 52, 115001 (2010).

    Article  ADS  Google Scholar 

  23. T. A. Khusainov, E. D. Gospodchikov, and A. G. Shalashov, Plasma Phys. Rep. 38, 83 (2012).

    Article  ADS  Google Scholar 

  24. E. D. Gospodchikov, T. A. Khusainov, and A. G. Shalashov, Plasma Phys. Controlled Fusion 54, 045009 (2012).

    Article  ADS  Google Scholar 

  25. A. Cappa, E. Holzhauer, F. Castejon, M. Tereshchenko, Á. Fernández, and A. Köhn, in Proceedings of the 34th EPS Conference on Plasma Physics, Warsaw, 2007, ECA 31F, 5.054 (2007).

    Google Scholar 

  26. A. Köhn, Á. Cappa, E. Holzhauer, F. Castejón, Á. Fernández, and U. Stroth, Plasma Phys. Controlled Fusion 50, 085018 (2008).

    Article  ADS  Google Scholar 

  27. E. D. Gospodchikov, T. A. Khusainov, and A. G. Shalashov, Probl. At. Sci. Technol. 82 (6), 64 (2012).

    Google Scholar 

  28. E. D. Gospodchikov and A. G. Shalashov, Radiophys. Quantum Electron. 55, 462 (2012).

    Article  ADS  Google Scholar 

  29. E. D. Gospodchikov, A. G. Shalashov, and A. G. Kutlin, EPJ Web Conf. 149, 03006 (2017).

    Article  Google Scholar 

  30. B. B. Kadomtsev, Collective Phenomena in Plasma (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  31. A. G. Shalashov and E. D. Gospodchikov, Plasma Phys. Controlled Fusion 56, 125011 (2014).

    Article  ADS  Google Scholar 

  32. E. D. Gospodchikov, T. A. Khusainov, and A. G. Shalashov, Plasma Phys. Rep. 42, 723 (2016).

    Article  ADS  Google Scholar 

  33. A. Yu. Popov, Plasma Phys. Controlled Fusion 57, 025010 (2015).

    Article  ADS  Google Scholar 

  34. J. Menard, J. Canik, J. Chrzanowski, M. Denault, L. Dudek, S. Gerhardt, S. Kaye, C. Kessel, E. Kolemen, R. Maingi, C. Neumeyer, M. Ono, E. Perry, R. Raman, S. Sabbagh, et al., IEEE/NPSS 24th Symposium on Fusion Engineering, Chicago, 2011, Invited Papers. https://e-reports-ext.llnl.gov/pdf/501656.pdf.

  35. J. Milnes, N. B. Ayed, F. Dhalla, G. Fishpool, J. Hill, I. Katramados, R. Martin, G. Naylor, T. O’Gorman, R. Scannell, and M. U. Team, Fusion Eng. Des. 96, 42 (2015).

    Article  Google Scholar 

  36. A. A. Balakin, M. N. Buyanova, E. D. Gospodchikov, and A. G. Shalashov, in Proceedings of the 8th International Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications,” Nizhny Novgorod, 2011, p.177.

  37. M. A. Tereshchenko, Plasma Phys. Rep. 43, 18 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Khusainov.

Additional information

Original Russian Text © T.A. Khusainov, A.G. Shalashov, E.D. Gospodchikov, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 5, pp. 416–429.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusainov, T.A., Shalashov, A.G. & Gospodchikov, E.D. Linear Transformation of Electromagnetic Wave Beams of the Electron-Cyclotron Range in Toroidal Magnetic Configurations. Plasma Phys. Rep. 44, 484–497 (2018). https://doi.org/10.1134/S1063780X18050070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18050070

Navigation