Skip to main content
Log in

Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion–neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion–neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, London, 2002).

    Book  Google Scholar 

  2. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys. Usp. 47, 447 (2004).

    Article  ADS  Google Scholar 

  3. G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 4 (2009).

    Article  Google Scholar 

  4. S. A. Khrapak, A. V. Ivlev, and G. E. Morfill, Phys. Rev. E 64, 046403 (2001).

    Article  ADS  Google Scholar 

  5. S. A. Khrapak and G E. Morfill, Phys. Plasmas 15, 084502 (2008).

    Article  ADS  Google Scholar 

  6. S. A. Khrapak, B. A. Klumov, and G. E. Morfill, Phys. Rev. Lett. 100, 225003 (2008).

    Article  ADS  Google Scholar 

  7. D. S. Lemons, M. S. Murillo, W. Daughton, and D. Winske, Phys. Plasmas 7, 2306 (2000).

    Article  ADS  Google Scholar 

  8. M. Nambu, M. Salimullah, and R. Bingham, Phys. Rev. E 63, 056403 (2001).

    Article  ADS  Google Scholar 

  9. S. Bhattacharjee and N. Das, Phys. Plasmas 19, 103707 (2012).

    Article  ADS  Google Scholar 

  10. R. L. Merlino, A. Barkan, C. Thompson, and N. D. Angelo, Phys. Plasmas 5, 5 (1997).

    Google Scholar 

  11. M. Rosenberg and V. W. Chow, J. Plasma Phys. 61, 51 (1999).

    Article  ADS  Google Scholar 

  12. A. A. Mamun and P. K. Shukla, Phys. Plasmas 7, 4412 (2000).

    Article  ADS  Google Scholar 

  13. V. W. Chow and M. Rosenberg, Planet. Space Sci. 43, 613 (1994).

    Article  ADS  Google Scholar 

  14. M. Rosenberg and P. K. Shukla, Plasma Phys. Controlled Fusion 46, 1807 (2004).

    Article  ADS  Google Scholar 

  15. R L. Merlino, IEEE Trans. Plasma Sci. 25, 60 (1997).

    Article  ADS  Google Scholar 

  16. B. P. Pandey, S. V. Vladimirov, and C. V. Dwivedi, Phys. Plasmas 21, 093703 (2014).

    Article  ADS  Google Scholar 

  17. M. E. Koepke and N. Sato, New J. Phys. 5, 42 (2003).

    Article  ADS  Google Scholar 

  18. E. Thomas, R. L. Merlino, and M. Rosenberg, Plasma Phys. Controlled Fusion 54, 124034 (2012).

    Article  ADS  Google Scholar 

  19. V. C. Liu and S. J. Ying, AIAA J. 18, 10 (1980).

    Article  Google Scholar 

  20. L. Nasi and J. L. Raimbault, Phys. Plasmas 17, 113513 (2010).

    Article  ADS  Google Scholar 

  21. F. F. Chen, Phys. Plasmas 14, 094703 (2007).

    Article  ADS  Google Scholar 

  22. E. Thomas, R. L. Merlino, and M. Rosenberg, IEEE Trans. Plasma Sci. 41, 8111 (2013).

    Article  Google Scholar 

  23. M. Rosenberg, Phys. Scr. 89, 085601 (2014)

    Article  ADS  Google Scholar 

  24. P. K. Kaw and R. Singh, Phys. Rev Lett. 79, 423 (1997).

    Article  ADS  Google Scholar 

  25. J. Winter, Phys. Plasmas 7, 3862 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bezbaruah.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezbaruah, P., Das, N. Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma. Plasma Phys. Rep. 44, 514–519 (2018). https://doi.org/10.1134/S1063780X18050057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18050057

Navigation