Skip to main content
Log in

Initiation of Positive Streamers near Uncharged Ice Hydrometeors in the Thundercloud Field

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Since the threshold electric field required for breakdown of air is much higher than the maximum field strength measured in thunderstorm clouds, the problem of lightning initiation still remains unsolved. According to the popular hypothesis, lightning can be initiated by a streamer discharge in the field enhanced near a hydrometeor. To verify the adequacy of this hypothesis, the development of a positive streamer propagating along the thunderstorm electric field in the vicinity of an ice needle at an air pressure corresponding to an altitude of 5 km (which is typical of the lightning initiation conditions) was simulated numerically. The hydrometeor dimensions are determined at which streamers can be initiated at different strengths of the thunderstorm electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).

    Google Scholar 

  2. T. C. Marshall, M. P. McCarthy, and W. D. Rust, J. Geophys. Res. 100, 7097 (1995).

    Article  ADS  Google Scholar 

  3. T. C. Marshall, M. Stolzenburg, C. R. Maggio, L. M. Coleman, P. R. Krehbeil, T. Hamlin, R. J. Thomas, and W. Rison, Geophys. Rev. Lett. 32, L03813 (2005).

    ADS  Google Scholar 

  4. R. Griffiths and C. Phelps, J. Geophys. Res. D 81, 3671 (1976).

    Article  ADS  Google Scholar 

  5. L. B. Loeb, J. Geophys. Res. 71, 4711 (1966).

    Article  ADS  Google Scholar 

  6. R. Solomon, V. Schroeder, and M. B. Baker, Q. J. R. Meteorol. Soc. 127, 2683 (2001).

    ADS  Google Scholar 

  7. A. Dubinova, C. Rutjes, U. Ebert, S. Buitink, O. Scholten, and G. T. N. Trinh, Phys. Rev. Lett. 115, 015002 (2015).

    Article  ADS  Google Scholar 

  8. S. Sadighi, N. Liu, J. R. Dwyer, and H. K. Rassoul, J. Geophys. Res. Atmos. 120, 3660 (2015).

    Article  ADS  Google Scholar 

  9. L. P. Babich, E. I. Bochkov, I. M. Kutsyk, and T. Neubert, JETP Lett. 103, 449 (2016).

    Article  ADS  Google Scholar 

  10. L. P. Babich, E. I. Bochkov, I. M. Kutsyk, T. Neubert, and O. Chanrion, J. Geophys. Res. Atmos. 121, 6393 (2016).

    Article  ADS  Google Scholar 

  11. L. P. Babich, E. I. Bochkov, and T. Neubert, J. Atmos. Solar-Terr. Phys. 154, 43 (2017).

    Article  ADS  Google Scholar 

  12. D. E. Proctor, R. Uytenbogaardt, and B. M. Meredith, J. Geophys. Res. 93, 12683 (1988).

    Article  ADS  Google Scholar 

  13. J. R. Dwyer and M. A. Uman, Phys. Rep. 534, 147 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  14. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).

    Google Scholar 

  15. V. M. Muchnik, Physics of Thunderstorms (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  16. V. Artemov and A. Volkov, Ferroelectrics 466, 158 (2014).

    Article  Google Scholar 

  17. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  18. L. P. Babich, E. I. Bochkov, and I. M. Kutsyk, JETP Lett. 99, 386 (2014).

    Article  ADS  Google Scholar 

  19. L. P. Babich, E. I. Bochkov, I. M. Kutsyk, T. Neubert, and O. Chanrion, J. Geophys. Res. Space Phys. 120, 5087 (2015).

    Article  ADS  Google Scholar 

  20. A. Bourdon, V. P. Pasko, N. Y. Liu, S. Celestin, P. Segur, and E. Marode, Plasma Sources Sci. Technol. 16, 656 (2007).

    Article  ADS  Google Scholar 

  21. M. V. Zheleznyak, A. Kh. Mnatsakanyan, and S. V. Sizykh, High Temp. 20, 357 (1982).

    ADS  Google Scholar 

  22. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Nauka, Moscow, 2001; IOP, Bristol, 2000).

    Book  Google Scholar 

  23. M. Arrayas, U. Ebert, and W. Hundsdorfer, Phys. Rev. Lett. 88, 174502 (2002).

    Article  ADS  Google Scholar 

  24. A. V. Gurevich, G. M. Milikh, and R. A. Roussel-Dupre, Phys. Lett. A 165, 463 (1992).

    Article  ADS  Google Scholar 

  25. L. P. Babich, E. I. Bochkov, and I. M. Kutsyk, JETP 112, 902 (2011).

    Article  ADS  Google Scholar 

  26. L. P. Babich, E. I. Bochkov, I. M. Kutsyk, T. Neubert, and O. Chanrion, J. Geophys. Res. 117, A09316 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Babich.

Additional information

Original Russian Text © L.P. Babich, E.I. Bochkov, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 5, pp. 461–466.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babich, L.P., Bochkov, E.I. Initiation of Positive Streamers near Uncharged Ice Hydrometeors in the Thundercloud Field. Plasma Phys. Rep. 44, 533–538 (2018). https://doi.org/10.1134/S1063780X18050033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18050033

Navigation