Plasma Physics Reports

, Volume 44, Issue 3, pp 378–386 | Cite as

Aneutronic Fusion in Collision of Oppositely Directed Plasmoids

  • A. Asle Zaeem
  • H. Ghafoori Fard
  • A. Sadighzadeh
  • M. Habibi
Fusion Plasma


Tri-Alpha and Helion energy companies have proposed an approach as the near future fusion reactor. The method used in this kind of reactor for attaining high fusion yield is based on the formation and throwing of two plasmoids toward each other. In this study, the optimized reaction rate for interpenetration of two head on colliding plasmoids is investigated. Calculations are performed by supposing the velocity of plasmoids ions as Maxwellian distribution function. Fusion output-to-input power ratio (Q factor) was computed by evaluation of the velocity-averaged cross sections and also ion−electron and ion−ion Coulomb power loss. A fluid model including a computational code has been used for the precise calculations of fusion power balance. The optimum interpenetration velocity and plasmoids parameters required to reach the ignition are studied for aneutronic fusion fuels, such as p11B and D–3He, as well as D−T and D−D fuels. The results of investigation show that the breakeven is attainable in specific collision velocity and plasma temperature for each fuel. Also, the plasma density has to be around 1020 ions/cm3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Slough, G. Votroubek, and C. Pihl, Nucl. Fusion 51, 053008 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    M. M. Basko, A. J. Kemp, and J. Meyer-ter-Vehn, Nucl. Fusion 40, 59 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    S. A. Slutz, M. C. Herrmann, R. A. Vesey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, and M. E. Cuneo, Phys. Plasmas 17, 056303 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    T. P. Intrator, J. Y. Park, J. H. Degnan, I. Furno, C. Grabowski, S. C. Hsu, E. L. Ruden, P. G. Sanchez, J. M. Taccetti, M. Tuszewski, W. J. Waganaar, G. A. Wurden, S. Y. Zhang, and Zh. Wang, IEEE Trans. Plasma Sci. 32, 152 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    J. H. Degnan, D. J. Amdahl, A. Brown, T. Cavazos, S. K. Coffey, M. T. Domonkos, M. H. Frese, S. D. Frese, D. G. Gale, T. C. Grabowski, T. P. Intrator, R. C. Kirkpatrick, G. F. Kiuttu, F. M. Lehr, J. D. Letterio, et al., IEEE Trans. Plasma Sci. 36, 80 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    S. Zhang, G. A. Wurden, T. P. Intrator, E. L. Ruden, W. J. Waganaar, C. T. Grabowski, R. M. Renneke, and J. H. Degnan, IEEE Trans. Plasma Sci. 34, 223 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    R. E. Siemon, R. I. Lindemuth, and K. F. Schoenberg, Comm. Plasma Phys. Controlled Fusion 18, 363 (1999).Google Scholar
  8. 8.
    J. H. Degnan, J. M. Taccetti, T. Cavazos, D. Clark, S. K. Coffey, R. J. Faehl, M. H. Frese, D. Fulton, J. C. Gueits, D. Gale, T. W. Hussey, T. P. Intrator, R. C. Kirkpatrick, G. H. Kiuttu, F. M. Lehr, et al., IEEE Trans. Plasma Sci. 29, 93 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    H. Hora, G. H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, and X.-T. He, Energy Environ. Sci. 3, 479 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Sonm and N. J. Fisch, Physics Lett. A 356, 72 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    N. J. Fisch and J. M. Rax, Phys. Rev. Lett. 69, 772 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    N. J. Fisch and M. C. Herrmann, Nucl. Fusion 35, 1753 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    N. J. Fisch and M. C. Herrmann, Nucl. Fusion 34, 1541 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    J. T. Slough, patent No. US 9082516B2 (2015)Google Scholar
  16. 16.
    M. Binderbauer, V. Bystritskii, and T. Tajima, patent No. EP 3187028A2 (2017).Google Scholar
  17. 17.
    M. Tuszewski, M. W. Binderbauer, D. Barnes, E. Garate, H. Guo, S. Putvinski, and A. N. Smirnov, patent No. US 20160276044A1 (2016).Google Scholar
  18. 18.
    F. Santini, Nucl. Fusion 46, 225 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    J. Friedberg, Plasma Physics and Fusion Energy (Cambridge Univ. Press, Cambridge, 2007), Chap. 9.CrossRefGoogle Scholar
  20. 20.
    W. M. Stacey, Fusion Plasma Physics (Wiley, Weinheim, 2005), p. 296.CrossRefGoogle Scholar
  21. 21.
    K. Hubner, H. Bruhns, and K. Steinmetz, Phys. Lett. A 69, 269 (1978).ADSCrossRefGoogle Scholar
  22. 22. Scholar
  23. 23.
    A. Asle Zaeem, IEEE Trans. Plasma Sci. 38, 2069 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    M. M. Nevins and R. Swain, Nucl. Fusion 40, 865 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    H.-S. Bosch and G. M. Hale, Nucl. Fusion 32, 611 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    V. Damideh, A. A. Zaeem, A. Heidarnia, A. Sadighzadeh, M. A. Tafreshi, F. Abbasi Davani, M. Moradshahi, M. Bakhshzad Mahmoudi, and R. Damideh, J. Fusion Energy 31, 47 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    A. Salehizadeh, A. Sadighzadeh, M. Sedaghat Movahhed, A. A. Zaeem, A. Heidarnia, R. Sabri, M. Bakhshzad Mahmoudi, H. Rahimi, S. Rahimi, E. Johari, M. Torabi, and V. Damideh, J. Fusion Energy 32, 293 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Asle Zaeem
    • 1
  • H. Ghafoori Fard
    • 2
  • A. Sadighzadeh
    • 3
  • M. Habibi
    • 1
  1. 1.Energy Engineering and Physics DepartmentAmirkabir University of TechnologyTehranIran
  2. 2.Electrical Engineering DepartmentAmirkabir University of TechnologyTehranIran
  3. 3.Plasma Physics and Nuclear Fusion Research SchoolTehranIran

Personalised recommendations