Plasma Physics Reports

, Volume 44, Issue 3, pp 303–311 | Cite as

Influence of an External AC Electric Field on Plasma Turbulence in the Tokamak Near-Wall Layer

  • R. V. Shurygin
  • A. V. Melnikov


Braginskii reduced equations of two-fluid hydrodynamics are modified to take into account the presence of an external ac electric field localized in the tokamak near-wall layer. Numerical simulations show that, after reaching certain amplitude, such a field oscillating with the frequency ω ≈ ωGAM is capable of suppressing turbulent processes. The turbulence suppression mechanism consists in a sharp decrease in the growth rate of drift-resistive ballooning instability due to the appearance of additional nonlinear terms related to the external field in the equation for the vorticity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Diamond, S.-I. Itoh, K. Itoh, and T. S. Harm, Plasma Phys. Controlled Fusion 47, R35 (2005).CrossRefGoogle Scholar
  2. 2.
    A. Fujisawa, Nucl. Fusion 49, 013001 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    A. V. Melnikov, L. G. Eliseev, S. V. Perfilov, V. F. Andreev, S. A. Grashin, K. S. Dyabilin, A. N. Chudnovskiy, M. Yu. Isaev, S. E. Lysenko, V. A. Mavrin, M. I. Mikhailov, D. V. Ryzhakov, R. V. Shurygin, and V. N. Zenin, Nucl. Fusion 53, 093019 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids B 2, 1 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Z. Zhang and S. M. Mahajan, Phys. Fluids B 4, 1385 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    T. S. Harm, M. A. Beer, Z. Lin, G. W. Hammett, W. W. Lee, and W. M. Tang, Phys. Plasmas 6, 922 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    N. Miyato, J. Li, and Y. Kishimoto, Phys. Plasmas 11, 5557 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    K. Hallatschek and D. Biskamp, Phys. Rev. Lett. 86, 1223 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Malkov and P. H. Diamond, Phys. Plasmas 8, 3996 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    K. Miki and P. H. Diamond, Nucl. Fusion 51, 103003 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    K. Hallatschek and G. R. McKee, Phys. Rev. Lett. 109, 245001 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    C. P. Hung and A. B. Hassam, Phys. Plasmas 20, 092107 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    L. G. Ashkinazi, A. A. Belokurov, V. V. Bulanin, A. D. Gurchenko, E. Z. Gusakov, T. P. Kiviniemi, S. V. Lebedev, V. A. Kornev, T. T. Korpilo, S. V. Krikunov, S. Leernik, M. Machielsen, P. Niskala, A. V. Petrov, A. S. Tukachinsky, et al., Plasma Phys. Controlled Fusion 59, 014037 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    P. N. Guzdar and A. B. Hassam, Phys. Plasmas 3, 3701 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    A. Zeiler, J. F. Drake, and B. Rogers, Phys. Plasmas 39, 2134 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    R. V. Shurygin and A. A. Mavrin, Plasma Phys. Rep. 36, 535 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    O. E. Garsia, V. Naulin, A. H. Nielsen, and J. J. Rusmussen, Phys. Plasmas 12, 062309 (2005).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, M. V. Ufimtsev, and V. N. Zenin, Nucl. Fusion 57, 115001 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    V. Rozhansky, Contrib. Plasma Phys. 46, 575 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    T. D. Rognlien, D. D. Ryutov, N. Mattor, and C. D. Porter, Phys. Plasmas 6, 1851 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research Center “Kurchatov Institute,”MoscowRussia
  2. 2.National Research Nuclear University “MEPhI,”MoscowRussia

Personalised recommendations