Plasma Physics Reports

, Volume 44, Issue 3, pp 326–333 | Cite as

Effect of Electronic Inertia on the Gravito-Electrostatic Sheath Structure Formation

Space Plasma
  • 5 Downloads

Abstract

The gravito-electrostatic sheath (GES) model, previously proposed to address the fundamental issues on the surface emission mechanism of outflowing solar plasma on the basis of plasma−wall interaction processes with inertialess electrons on both bounded and unbounded scales, is reformulated in the light of active electron inertial response amid geometrical curvature effects. We accordingly derive the electron population distribution law considering both weak electron inertia and geometrical curvature effects in a new analytic construct coupled with the GES structure equations in a closed form. The analysis shows that the GES characteristics and hence plasma outflow dynamics are noticeably affected because of electron inertia. As a consequence of the electron inertia inclusion in contrast with the previous GES formalism, it is found that the GES width gets reduced (–5%), the sheath boundary gets contracted (–7%), the net current density at the surface gets reduced (–25%), the GES potential enhances (+17%), the transonic horizon decreases (‒35%), self-gravity enhances (+2%), and so forth. The obtained results are in fair accord with the existing model predictions centered around both the earlier GES formalisms and standard fluid-kinetic predictions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Stix, The Sun: An Introduction (Springer, Berlin, 2002).CrossRefMATHGoogle Scholar
  2. 2.
    E. N. Parker, Astrophys. J. 128, 664 (1958).ADSCrossRefGoogle Scholar
  3. 3.
    E. N. Parker, Space Sci. Rev. 4, 666 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    J. Lemaire and M. Scherer, J. Geophys. Res. 76, 7479 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    T. E. Holzer and W. I. Axford, Ann. Rev. Astron. Astrophys. 8, 31 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    I. Zouganelis, M. Maksimovic, N. Meyer-Vernet, H. Lamy, and K. Issautier, Astrophys. J. 606, 542 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    M. M. Echim, J. Lemaire, and O. Lie-Svendsen, Surv. Geophys. 31, 1 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    C. B. Dwivedi, P. K. Karmakar, and S. C. Tripathy, Astrophys. J. 336, 1340 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    P. K. Karmakar and C. B. Dwivedi, Int. J. Astron. Astrophys. 1, 210 (2011).CrossRefGoogle Scholar
  10. 10.
    H. P. Goutam and P. K. Karmakar, Europhys. Lett. 112, 39001 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    H. P. Goutam and P. K. Karmakar, Astrophys. Space Sci. 357, 127 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    H. P. Goutam and P. K. Karmakar, Europhys. Lett. 115, 29001 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    P. K. Karmakar, H. P. Goutam, M. Lal, and C. B. Dwivedi, Mont. Not. Royal Astron. Soc. 460, 2919 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    J. Christensen-Dalsgaard and D. O. Gough, Nature 259, 89, 1976.ADSCrossRefGoogle Scholar
  15. 15.
    E. Priest, Magnetohydrodynamics of the Sun (Cambridge Univ. Press, Cambridge, 2014).Google Scholar
  16. 16.
    U. Deka and C. B. Dwivedi, Braz. J. Phys. 40, 333 (2010).CrossRefGoogle Scholar
  17. 17.
    P. K. Karmakar and B. Borah, Contrib. Plasma Phys. 53, 516 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    M. Gohain and P. K. Karmakar, Eur. Phys. J. D 70, 222 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    V. M. Cadez and G. Jovanovic, Pub. Astron. Obs. Belgrade 84, 495 (2008).ADSGoogle Scholar
  20. 20.
    E. Ahedo, Phys. Plasmas 16, 113503 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    V. M. Cadez and G. Jovanovic, Pub. Astron. Obs. Belgrade 84, 495 (2008).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsTezpur UniversityTezpur, Assam, NapaamIndia

Personalised recommendations