Skip to main content
Log in

Rogue Waves in Multi-Ion Cometary Plasmas

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The effect of pair ions on the formation of rogue waves in a six-component plasma composed of two hot and one colder electron component, hot ions, and pair ions is studied. The kappa distribution, which provides an unambiguous replacement for a Maxwellian distribution in space plasmas, is connected with nonextensive statistical mechanics and provides a continuous energy spectrum. Hence, the colder and one component of the hotter electrons is modeled by kappa distributions and the other hot electron component, by a q-nonextensive distribution. It is found that the rogue wave amplitude is different for various pair-ion components. The magnitude, however, increases with increasing spectral index and nonextensive parameter q. These results may be useful in understanding the basic characteristics of rogue waves in cometary plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Muller, C. Garrett, and A. Osborne, J. Oceanogr. 18, 66 (2005).

    Article  Google Scholar 

  2. C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009).

    MATH  Google Scholar 

  3. M. Onorato, A. R. Osborne, and M. Serio, Phys. Rev. Lett. 96, 014503 (2010).

    Article  ADS  Google Scholar 

  4. V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).

    ADS  Google Scholar 

  5. T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).

    Article  ADS  Google Scholar 

  6. A. M. Turing, Philos. Trans. R. Soc. London B 237, 37 (1952).

    Article  ADS  Google Scholar 

  7. S. Watanabe, J. Plasma Phys. 17, 487 (1977).

    Article  ADS  Google Scholar 

  8. M. Shats, H. Punzmann, and H. Xia, Phys. Rev. Lett. 104, 104503 (2010).

    Article  ADS  Google Scholar 

  9. A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev, Phys. Rev. X 2, 011015 (2012).

    Google Scholar 

  10. A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, Phys. Rev. Lett. 101, 065303 (2008).

    Article  ADS  Google Scholar 

  11. M. Erkintalo, G. Genty, and J. M. Dudley, Opt. Lett. 34, 2468 (2009).

    Article  ADS  Google Scholar 

  12. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, F. Dias, and J. M. Dudley, Nat. Phys. 6, 790 (2010).

    Article  Google Scholar 

  13. A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, Phys. Rev. Lett. 103, 17390 (2009).

    Article  Google Scholar 

  14. Y. V. Bludov, V. V. Konotop, and N. Akhmediev, Phys. Rev. A 80, 033610 (2009).

    Article  ADS  Google Scholar 

  15. Y. V., Bludov, V. V. Konotop, and N. Akhmediev, Eur. Phys. J. 185, 169 (2010).

    Google Scholar 

  16. M. Marklund and L. Stenflo, Physics 2, 86 (2009).

    Article  Google Scholar 

  17. L. Stenflo and M. Marklund, J. Plasma Phys. 76, 293 (2010).

    Article  ADS  Google Scholar 

  18. E. I. El-Awady and W. M. Moslem, Phys. Plasmas 18, 082306 (2011).

    Article  ADS  Google Scholar 

  19. W. M. Moslem, Phys. Plasmas 18, 032301 (2011).

    Article  ADS  Google Scholar 

  20. W. M. Moslem, P. K. Shukla, and B. Eliasson, Europhys. Lett. 96, 25002 (2011).

    Article  ADS  Google Scholar 

  21. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, Phys. Rep. 528, 47 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  23. V. Tsytovich and C. B. Wharton, Comments Plasma Phys. Controlled Fusion 4, 91 (1969).

    Google Scholar 

  24. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

    Article  ADS  Google Scholar 

  25. H. R. Miller and P. J. Witta, Active Galactic Nuclei (Springer, Berlin, 1987).

    Google Scholar 

  26. C. M. Surko, M. Leventhal, and A. Passner, Phys. Rev. Lett. 62, 901 (1989).

    Article  ADS  Google Scholar 

  27. R. G. Greaves, M. D. Tinkle, and C. M. Surko, Phys. Plasmas 1, 1439 (1994).

    Article  ADS  Google Scholar 

  28. R. D. Zwickl, D. N. Baker, S. J. Bame, W. C. Feldman, S. A. Fuselier, W. F. Huebner, D. J. McComas, and D. T. Young, Geophys. Res. Lett. 13, 401 (1986).

    Article  ADS  Google Scholar 

  29. O. Bouzit and M. Tribeche, Phys. Plasmas 22, 103703 (2015).

    Article  ADS  Google Scholar 

  30. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  31. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  ADS  Google Scholar 

  32. C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, New York, 2009).

    MATH  Google Scholar 

  33. C. Tsallis, Entropy 13, 1765 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  34. C. Tsallis, R. S. Mendes, and A. R. Plastino, Physica A 261, 534 (1998).

    Article  ADS  Google Scholar 

  35. E. P. Borges, C. Tsallis, G. F. J. Anãnõs, and P. M. C. de Oliveira, Phys. Rev. Lett. 89, 254103 (2002).

    Article  ADS  Google Scholar 

  36. G. Livadiotis, J. Math. Chem. 45, 930 (2009).

    Article  MathSciNet  Google Scholar 

  37. M. P. Leubner, Astrophys. Space Sci. 282, 573 (2002).

    Article  ADS  Google Scholar 

  38. A. L. Brinca and B. T. Tsurutani, Astron. Astrophys. 187, 311 (1987).

    ADS  Google Scholar 

  39. P. H. Chaizy, H. Reme, J. A. Sauvaud, C. D’Uston, R. P. Lin, D. E. Larson, D.L. Mitchell, K. A. Anderson, C. W. Carlson, H. Korth, and D. A. Mendis, Nature 349, 393 (1991).

    Article  ADS  Google Scholar 

  40. H. Balsiger, K. Altwegg, F. Bühler, J. Geiss, A. G. Ghielmetti, B. E. Goldstein, R. Goldstein, W. T. Huntress, W. H. Ip, A. J. Lazarus, A. Meier, M. Neugebauer, U. Rettenmund, H. Rosenbauer, R. Schwenn, et al., Nature 321, 330 (1986).

    Article  ADS  Google Scholar 

  41. F. M. Ipavich, A. B. Galvin, G. Gloeckler, D. Hovestadt, B. Klecker, and M. Scholer, Science 232, 366 (1986).

    Article  ADS  Google Scholar 

  42. M. R. Voelzke and L. S. Izaguirre, Planet. Space Sci. 65, 104 (2012).

    Article  ADS  Google Scholar 

  43. C. Fröhlich, M. Huber, S. K. Solanki, and R. von Steiger, Solar Composition and Its Evolution-from Core to Corona (Space Sciences series of ISSI) (Kluwer Academic, Dordrecht, 1998).

    Book  Google Scholar 

  44. L. Yang, K. Yang, and H. Luo, Phys. Lett. A 267, 331 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  45. Y. Zhang, Y. Lv, L. Ye, and H. Zhao, Phys. Lett. A 36, 465 (2007).

    Article  ADS  Google Scholar 

  46. K. Shimizu and Y. H. Ichikawa, J. Phys. Soc. Jpn. 33, 789 (1972).

    Article  ADS  Google Scholar 

  47. S. K. El-Labany, J. Plasma Phys. 54, 295 (1995).

    Article  ADS  Google Scholar 

  48. S. K. El-Labany, N. A. El-Bedwehy, and H. N. Abd El-Razek, Phys. Plasmas 14, 103704 (2007).

    Article  ADS  Google Scholar 

  49. A. S. Bains, M. Tribeche, and T. S. Gill, Phys. Plasmas 18, 022108 (2011).

    Article  ADS  Google Scholar 

  50. A. S. Bains, M. Tribeche, and T. S., Gill, Phys. Lett. A 375, 2059 (2011).

    Article  ADS  Google Scholar 

  51. A. Ankiewicz, N. Devine, and N. Akhmediev, Phys. Lett. A 373, 3997 (2009).

    Article  ADS  Google Scholar 

  52. A. E. Dubinov, Plasma Phys. Rep. 35, 991 (2009).

    Article  ADS  Google Scholar 

  53. T. W. Broiles, G. Livadiotis, J. L. Burch, K. Chae, and G. Clark, J. Geophys. Res. Space Phys., 121, 7407 (2016).

    Article  ADS  Google Scholar 

  54. M. Manesh, T. W. Neethu, J. Neethu, S. Sijo, G. Sreekala, and C. Venugopal, J. Theor. Appl. Phys., 10, 289 (2016).

    Article  Google Scholar 

  55. G. Sreekala, M. Manesh, S. Sijo, P. A. Noble, G. Renuka, and C. Venugopal, Int. J. Chem. Phys. Sci. 4, 83 (2015).

    Google Scholar 

  56. M. Manesh, G. Sreekala, S. Sijo, T. W. Neethu, V. Anu, and C. Venugopal, J. Appl. Math. Phys. 3, 1431 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sreekala.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreekala, G., Manesh, M., Neethu, T.W. et al. Rogue Waves in Multi-Ion Cometary Plasmas. Plasma Phys. Rep. 44, 102–109 (2018). https://doi.org/10.1134/S1063780X18010154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18010154

Navigation