Skip to main content
Log in

Study of Cold-Cathode Thyratron Triggering Stability at High Anode Voltages

  • Plasma Diagnostics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The delay time to breakdown of a cold-cathode thyratron with a trigger unit based on an auxiliary steady-state low-current glow discharge was studied experimentally. The device was connected into the electric circuit according to the circuit of a classical thyratron. The main experiments were carried out at low working gas (deuterium) pressures and high anode voltages of about 40 kV. It is found that, during the triggering current pulse or commutation of the main discharge current, the auxiliary discharge in the trigger unit passes from the stable segment of the current-voltage characteristic into the regime with a reduced operating voltage. Spontaneous reverse transitions from this regime are also possible. On the other hand, the initial conditions of the auxiliary discharge affect the delay time to thyratron breakdown and lead to the jitter in the total delay time to breakdown relative to the triggering pulse. The total delay time amounts to 100 ns, the jitter in delay time being within 15 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Frank and J. Christiansen, IEEE Trans. Plasma Sci. 17, 748 (1989).

    Article  ADS  Google Scholar 

  2. P. Bickel, J. Christiansen, K. Frank, A. Gortler, W. Hartmann, R. Kowalewicz, A. Linsenmeyer, C. Kozlik, R. Stark, and P. Wiesneth, IEEE Trans. Electron. Dev. 38, 712 (1991).

    Article  ADS  Google Scholar 

  3. K. Frank, E. Dewald, C. Bickes, U. Ernst, M. Iberler, J. Meier, U. Pruker, A. Rainer, M. Schlaug, and J. Schwab, IEEE Trans. Plasma Sci. 27, 1008 (1999).

    Article  ADS  Google Scholar 

  4. Y. D. Korolev and K. Frank, IEEE Trans. Plasma Sci. 27, 1525 (1999).

    Article  ADS  Google Scholar 

  5. A. V. Kozyrev, Y. D. Korolev, V. G. Rabotkin, and I. A. Shemyakin, J. Appl. Phys. 74, 5366 (1993).

    Article  ADS  Google Scholar 

  6. V. D. Bochkov, V. M. Dyagilev, V. G. Ushich, O. B. Frants, Y. D. Korolev, I. A. Shemyakin, and K. Frank, IEEE Trans. Plasma Sci. 29, 802 (2001).

    Article  ADS  Google Scholar 

  7. N. V. Landl, Y. D. Korolev, O. B. Frants, V. G. Geyman, and A. V. Bolotov, J. Phys. Conf. Series 652, 012050 (2015).

    Article  Google Scholar 

  8. Y. D. Korolev, N. V. Landl, V. G. Geyman, A. V. Bolotov, V. S. Kasyanov, V. O. Nekhoroshev, and S. S. Kovalsky, IEEE Trans. Plasma Sci. 43, 2349 (2015).

    Article  ADS  Google Scholar 

  9. Yu. Kh. Akhmadeev, V. V. Denisov, N. N. Koval, S. S. Kovalsky, I. V. Lopatin, P. M. Shchanin, and V. V. Yakovlev, Plasma Phys. Rep. 43, 67 (2017).

    Article  ADS  Google Scholar 

  10. T. Koval, V. N. Devyatkov, and N. V. Hung, J. Phys. Conf. Series 652, 012061 (2015).

    Article  Google Scholar 

  11. Yu. D. Korolev, V. A. Kuz’min, and G. A. Mesyats, Sov. Phys. Tech. Phys. 25, 418 (1980).

    ADS  Google Scholar 

  12. Y. D. Korolev and I. B. Matveev, IEEE Trans. Plasma Sci. 34, 2507 (2006).

    Article  ADS  Google Scholar 

  13. M. V. Malashin, S. I. Moshkunov, and V. Yu. Khomich, Plasma Phys. Rep. 43, 163 (2016).

    Article  ADS  Google Scholar 

  14. I. V. Schweigert, A. L. Aleksandrov, P. A. Bokhan, and D. E. Zakrevskiy, Plasma Phys. Rep. 43, 666 (2016).

    Article  ADS  Google Scholar 

  15. Yu. D. Korolev, N. V. Landl, V. G. Geiman, O. B. Frants, I. A. Shemyakin, and V. O. Nekhoroshev, Plasma Phys. Rep. 42, 799 (2016).

    Article  ADS  Google Scholar 

  16. N. V. Landl, Y. D. Korolev, O. B. Frants, I. A. Shemyakin, and V. G. Geyman, in Proceedings of the International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV-20014), Mumbai, 2014, p. 361.

    Book  Google Scholar 

  17. R. P. Lamba, V. Pathania, B. L. Meena, H. Rahaman, U. N. Pal, and R. Prakash, Rev. Sci. Instrum. 86, 103508 (2015).

    Article  ADS  Google Scholar 

  18. B. L. Meena, S. K. Rai, M. S. Tyagi, U. N. Pal, M. Kumar, and A. K. Sharma, J. Phys. Conf. Ser. 208, 012110 (2010).

    Article  Google Scholar 

  19. J. Zhang, J. P. Zhao, and Q. G. Zhang, IEEE Trans. Plasma Sci. 42, 2037 (2014).

    Article  ADS  Google Scholar 

  20. J. H. Feng, L. Zhou, Y. C. Fu, J. H. Zhang, R. K. Xu, F. X. Chen, L. B. Li, and S. J. Meng, AIP Adv. 4, 077115 (2014).

    Article  ADS  Google Scholar 

  21. J. Hu and J. L. Rovey, J. Phys. D 45, 465203 (2012).

    Article  ADS  Google Scholar 

  22. P. V. Logachev, G. I. Kuznetsov, A. A. Korepanov, A. V. Akimov, S. V. Shiyankov, O. A. Pavlov, D. A. Starostenko, and G. A. Fat’kin, Instrum. Exp. Tech. 56, 672 (2013).

    Article  Google Scholar 

  23. A. V. Akimov, V. E. Akimov, P. A. Bak, V. D. Bochkov, L. T. Vekhoreva, A. A. Korepanov, P. V. Logachev, A. N. Panov, D. A. Starostenko, and O. V. Shilin, Instrum. Exp. Tech. 55, 218 (2012).

    Article  Google Scholar 

  24. Yu. D. Korolev, N. V. Landl, V. G. Geiman, O. B. Frants, A. V. Bolotov, V. O. Nekhoroshev, and V. S. Kas’yanov, Tech. Phys. 62, 708 (2017).

    Article  Google Scholar 

  25. A. I. Ryabchikov, I. A. Ryabchikov, I. B. Stepanov, and U. P. Usov, Surf. Coat. Technol. 201, 6523 (2007).

    Article  Google Scholar 

  26. A. I. Ryabchikov, Rev. Sci. Instrum. 63, 2425 (1992).

    Article  ADS  Google Scholar 

  27. V. N. Devyatkov, N. N. Koval, P. M. Schanin, V. P. Grigoryev, and T. V. Koval, Laser Part. Beams 21, 243 (2003).

    Article  ADS  Google Scholar 

  28. Y. D. Korolev, O. B. Frants, N. V. Landl, and A. I. Suslov, IEEE Trans. Plasma Sci. 40, 2837 (2012).

    Article  ADS  Google Scholar 

  29. Y. D. Korolev, Russ. J. Gen. Chem 85, 1311 (2015).

    Article  Google Scholar 

  30. Yu. S. Akishev, G. I. Aponin, M. E. Grushin, V. B. Karal’nik, A. E. Monich, M. V. Pan’kin, and N. I. Trushkin, Plasma Phys. Rep. 33, 584 (2007).

    Article  ADS  Google Scholar 

  31. S. A. Barengol’ts, G. A. Mesyats, and M. M. Tsventoukh, JETP 107, 1039 (2008).

    Article  ADS  Google Scholar 

  32. N. P. Kondrat’eva, N. N. Koval, Y. D. Korolev, and P. M. Schanin. J. Phys. D 32, 699 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Korolev.

Additional information

Original Russian Text © Yu.D. Korolev, N.V. Landl, V.G. Geyman, O.B. Frants, I.A. Shemyakin, V.S. Kasyanov, A.V. Bolotov, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 1, pp. 112–120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, D., Landl, N.V., Geyman, V.G. et al. Study of Cold-Cathode Thyratron Triggering Stability at High Anode Voltages. Plasma Phys. Rep. 44, 110–117 (2018). https://doi.org/10.1134/S1063780X18010087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18010087

Navigation