Skip to main content
Log in

Contribution to the Chemistry of Plasma-Activated Water

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Plasma-activated water (PAW) was prepared by exposure to nonthermal plasma produced by a positive dc corona discharge in a transient spark regime. The activation of water was performed in atmosphere of various surrounding gases (air, nitrogen, carbon dioxide, and argon). This PAW retains its biological activity, measured on the mouse neuroblastoma cells culture, even after storage for more than one year. The highest hydrogen peroxide content was found for PAWs prepared in the atmospheres of argon or carbon dioxide, whereas the PAWs prepared in air and nitrogen exhibited lower hydrogen peroxide content. The acidity of PAWs mediated by nitric and nitrous acid formation displayed an opposite trend. It is concluded that the long-lasting biological effect of PAW is mediated by hydrogen peroxide in acid milieu only, whereas other possible active components decompose rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Spectrochim. Acta B 61, 2 (2006).

    Article  ADS  Google Scholar 

  2. J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, Th. von Woedtke, R. Brandenburg, T. von dem Hagen, and K.-D. Weltmann, J. Phys. D 44, 013002 (2011).

    Article  ADS  Google Scholar 

  3. A. Mizuno and Y. Hori, IEEE Trans. Industry Appl. 24, 387 (1988).

    Article  Google Scholar 

  4. M. Laroussi, IEEE Trans. Plasma Sci. 37, 714 (2009).

    Article  ADS  Google Scholar 

  5. M. Moreau, N. Orange, and M. G. J. Feuilloley, Biotechnol. Adv. 26, 610 (2008).

    Article  Google Scholar 

  6. M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, New J. Phys. 11, 115012 (2009).

    Article  ADS  Google Scholar 

  7. T. Nosenko, T. Shimizu, and G. E. Morfill, New J. Phys. 11, 115013 (2009).

    Article  ADS  Google Scholar 

  8. G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, and K. Harding, Plasma Process. Polym. 7, 194 (2010).

    Article  Google Scholar 

  9. J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J. L. Zimmermann, T. Shimizu, and S. Karrer, J. German Soc. Dermatol. 8, 1 (2010).

    Google Scholar 

  10. Th. von Woedtke, S. Reuter, K. Masura, and K.-D. Weltmann, Phys. Rep. 530, 291 (2013).

    Article  ADS  Google Scholar 

  11. Th. von Woedtke, B. Haertel, K.-D. Weltmann, and U. Lindequist, Pharmazie 68, 492 (2013).

    Google Scholar 

  12. J. Schlegel, J. Koritzer, and V. Boxhammer, Clin. Plasma Med. 1, 2 (2013).

    Article  Google Scholar 

  13. B. Haertel, Th. von Woedtke, K.-D. Weltmann, and U. Lindequist, Biomol. Ther. 22, 477 (2014).

    Article  Google Scholar 

  14. S. Cha and Y.-S. Park, Clin. Plasma Med. 2, 4 (2014).

    Article  Google Scholar 

  15. V. Scholtz, J. Pazlarova, H. Soušková, J. Khun, and J. Julák, Biotechnol. Adv. 33, 1108 (2015).

    Article  Google Scholar 

  16. M. Švarcová, J. Julák, V. Hubka, H. Soušková, and V. Scholtz, Prague Med. Rep. 115, 73 (2014).

    Article  Google Scholar 

  17. V. Scholtz, H. Soušková, M. Švarcová, V. Kříha, H. Živná, and J. Julák, Med. Mycol. 55, 492 (2017).

    Google Scholar 

  18. Plasma Medicine, Ed. by M. Laroussi, M. G. Kong, G. Morfill, and W. Stolz (Cambridge Univ. Press, Cambridge 2012).

    Google Scholar 

  19. D. B. Graves, J. Phys. D 45, 26300 (2012).

    Article  Google Scholar 

  20. M. Yousfi, N. Merbahi, J.P. Sarrette, O. Eichwald, A. Ricard, J. P. Gardou, O. Ducasse, and M. Benhenni, in Biomedical Engineering.Frontiers and Challenges, Ed. by R Fazel-Rezai (InTech, Shanghai, 2011), p. 99.

  21. S. Kelly and M. M. Turner, J. Appl. Phys. 114, 123301 (2013).

    Article  ADS  Google Scholar 

  22. E. Sysolyatina, A. Mukhachev, M. Yurova, M. Grushin, V. Karalnik, A. Petryakov, N. Trushkin, S. Ermolaeva, and Y. Akishev, Plasma Process. Polym. 11, 315 (2014).

    Article  Google Scholar 

  23. H. Jablonowski and Th. von Woedtke, Clin. Plasma Med. 3, 42 (2015).

    Article  Google Scholar 

  24. J. Országh, N. J. Mason, Š. Matejčík, and Y. Aranda-Gonzalvo, in Proceedings of the 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases, Novi Sad, 2010, p. 1.

    Google Scholar 

  25. M. J. Pavlovich, Y. Sakiyama, D. S. Clark, and D. B. Graves, Plasma Process. Polym. 10, 1051 (2013).

    Article  Google Scholar 

  26. K. Oehmigen, M. Hahnel, R. Brandenburg, C. Wilke, K.-D. Weltmann, and Th. von Woedtke, Plasma Process. Polym. 7, 250 (2010).

    Article  Google Scholar 

  27. Z. Machala, L. Chladekova, and M. Pelach, J. Phys. D 43, 222001 (2010).

    Article  ADS  Google Scholar 

  28. S. Schneider, J.-W. Lackmann, D. Ellerweg, B. Denis, F. Narberhaus, J. E. Bandow, and J. Benedikt, Plasma Process. Polym. 9, 561 (2012).

    Article  Google Scholar 

  29. D. Białoszewski, E. Bocian, B. Bukowska, M. Czajkowska, B. Sokół-Leszczyńska, and S. Tyski, Med. Sci. Monit. 16, MT71–5 (2010).

    Google Scholar 

  30. K. Oehmigen, J. Winter, M. Hahnel, C. Wilke, R. Brandenburg, K.-D. Weltmann, and Th. von Woedtke, Plasma Process. Polym. 8, 904 (2011).

    Article  Google Scholar 

  31. Z. Machala, B. Tarabova, K. Hensel, E. Špetlíková, L. Šikurová, and P. Luke., Plasma Process. Polym. 10, 649 (2013).

    Article  Google Scholar 

  32. P. Lukeš, E. Doležalová, I. Sisrová, and M. Člupek, Plasma Sources Sci. Technol. 23, 015019 (2014).

    Article  ADS  Google Scholar 

  33. M. J. Pavlovich, D. S. Clark, D. B. Graves, Plasma Sources Sci. Technol. 23, 065036 (2014).

    Article  ADS  Google Scholar 

  34. J. Julák, V. Scholtz, S. Kotúčová, and O. Janoušková, Phys. Med. 28, 230 (2012).

    Article  Google Scholar 

  35. N. Shainsky, D. Dobrynin, U. Ercan, S. Joshi, H. Ji, A. Brooks, G. Fridman, Y. Cho, A. Fridman, and G. Friedman, in Proceedings of the 20th International Symposium on Plasma Chemistry, Philadelphia, 2011.

    Google Scholar 

  36. R. Ma, G. Wang, Y. Tian, K. Wang, J. Zhang, and J. Fang, J. Hazard. Mater. 300, 643 (2015).

    Article  Google Scholar 

  37. Y. Xu, Y. Tian, R. Mab, Q. Liu, and J. Zhang, Food Chem. 197, 436 (2016).

    Article  Google Scholar 

  38. G. Kamgang-Youbi, M. Herry, T. Meylheuc, J.-L. Brisset, M.-N. Bellon-Fontaine, A. Doubla, and M. Naitali, Lett. Appl.Microbiol. 48, 13 (2009).

    Article  Google Scholar 

  39. M. Hoentsch, R. Bussiahn, H. Rebl, C. Bergemann, M. Eggert, M. Frank M, Th. von Woedtke, and B. Nebe, PLoS ONE 9, e104559 (2014).

    Article  ADS  Google Scholar 

  40. D. Ziuzina, S. Patil, P.J. Cullen, K. M. Keener, and P. Bourke, J. Appl. Microbiol. 114, 778 (2012)

    Article  Google Scholar 

  41. M. J. Traylor, M. J. Pavlovich, S. Karim, P. Hait, Y. Sakiyama, D. S. Clark, and D. B. Graves, J. Phys. D 44, 472001 (2011).

    Article  ADS  Google Scholar 

  42. J.-L. Brisset and E. Hnatiuc, Plasma Chem. Plasma Process. 32, 655 (2012).

    Article  Google Scholar 

  43. A. Kojtari, U. K. Ercan, J. Smith, G. Friedman, R. B. Sensenig, S. Tyagi, S. G. Joshi, H.-F. Ji, and A. D. Brooks, J. Nanomed. Biotherap. Discov. 4, 1000120 (2013).

    Google Scholar 

  44. W. A. Pryor and G. L. Squadrito, Am. J. Physiol. 268, L699 (1995).

    Google Scholar 

  45. J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman, Proc. Natl. Acad. Sci. USA 87, 1620 (1990).

    Article  ADS  Google Scholar 

  46. C. Ducrocq, B. Blanchard, B. H. Pignatelli, and H. Ohshima, Cell. Mol. Life Sci. 55, 1068 (1999).

    Article  Google Scholar 

  47. W. H. Koppenol, J. J. Moreno, A. William, W. A. Pryor, H. Ischiropoulos, and J. S. Beckman, Chem. Res. Toxicol. 5, 834 (1992).

    Article  Google Scholar 

  48. E. Bonfoco, D. Krainc, M. Ankarcrona, P. Nicoterat, and S. A. Lipton, Proc. Natl. Acad. Sci. USA 92, 7162 (1992).

    Article  ADS  Google Scholar 

  49. R. Laurita, D. Barbieri, M. Gherardi, V. Colombo, and P. Lukes, Clin. Plasma Med. 3, 53 (2015).

    Article  Google Scholar 

  50. P. Attri, Y. H. Kim, D. H. Park, J. H. Park, Y. J. Hong, H. S. Uhm, K.-N. Kim, A. Fridman, and E. H. Choi, Sci. Rep. 5, 9332 (2015).

    Article  Google Scholar 

  51. D. X. Liu, Y. C. Liu, C. Chen, A. J. Yang, D. Li, M. Z. Rong, H. L. Chen, and M. G Kong, Sci. Rep. 6, 23737 (2016).

    Article  ADS  Google Scholar 

  52. J. Shen, Y. Tian, Y. Li, R. Ma, Q. Zhang, J. Zhang, and J. Fang, Sci. Rep. 6, 28505 (2016).

    Article  ADS  Google Scholar 

  53. https://www.en-standard.eu/din-en-26777.

  54. http://www.dojindo.eu.com/store/p/456-Cell-Counting-Kit-8.aspx.

  55. M. S. Jhon, H. Eyring, and Y. K. Sung, Chem. Phys. Lett. 13, 36 (1972).

    Article  ADS  Google Scholar 

  56. J. Y. Park and Y. N. Lee, J. Phys. Chem. 92, 6294 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Julák.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julák, J., Hujacová, A., Scholtz, V. et al. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys. Rep. 44, 125–136 (2018). https://doi.org/10.1134/S1063780X18010075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18010075

Navigation