Abstract
Plasma-activated water (PAW) was prepared by exposure to nonthermal plasma produced by a positive dc corona discharge in a transient spark regime. The activation of water was performed in atmosphere of various surrounding gases (air, nitrogen, carbon dioxide, and argon). This PAW retains its biological activity, measured on the mouse neuroblastoma cells culture, even after storage for more than one year. The highest hydrogen peroxide content was found for PAWs prepared in the atmospheres of argon or carbon dioxide, whereas the PAWs prepared in air and nitrogen exhibited lower hydrogen peroxide content. The acidity of PAWs mediated by nitric and nitrous acid formation displayed an opposite trend. It is concluded that the long-lasting biological effect of PAW is mediated by hydrogen peroxide in acid milieu only, whereas other possible active components decompose rapidly.
Similar content being viewed by others
References
C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Spectrochim. Acta B 61, 2 (2006).
J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, Th. von Woedtke, R. Brandenburg, T. von dem Hagen, and K.-D. Weltmann, J. Phys. D 44, 013002 (2011).
A. Mizuno and Y. Hori, IEEE Trans. Industry Appl. 24, 387 (1988).
M. Laroussi, IEEE Trans. Plasma Sci. 37, 714 (2009).
M. Moreau, N. Orange, and M. G. J. Feuilloley, Biotechnol. Adv. 26, 610 (2008).
M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, New J. Phys. 11, 115012 (2009).
T. Nosenko, T. Shimizu, and G. E. Morfill, New J. Phys. 11, 115013 (2009).
G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, and K. Harding, Plasma Process. Polym. 7, 194 (2010).
J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J. L. Zimmermann, T. Shimizu, and S. Karrer, J. German Soc. Dermatol. 8, 1 (2010).
Th. von Woedtke, S. Reuter, K. Masura, and K.-D. Weltmann, Phys. Rep. 530, 291 (2013).
Th. von Woedtke, B. Haertel, K.-D. Weltmann, and U. Lindequist, Pharmazie 68, 492 (2013).
J. Schlegel, J. Koritzer, and V. Boxhammer, Clin. Plasma Med. 1, 2 (2013).
B. Haertel, Th. von Woedtke, K.-D. Weltmann, and U. Lindequist, Biomol. Ther. 22, 477 (2014).
S. Cha and Y.-S. Park, Clin. Plasma Med. 2, 4 (2014).
V. Scholtz, J. Pazlarova, H. Soušková, J. Khun, and J. Julák, Biotechnol. Adv. 33, 1108 (2015).
M. Švarcová, J. Julák, V. Hubka, H. Soušková, and V. Scholtz, Prague Med. Rep. 115, 73 (2014).
V. Scholtz, H. Soušková, M. Švarcová, V. Kříha, H. Živná, and J. Julák, Med. Mycol. 55, 492 (2017).
Plasma Medicine, Ed. by M. Laroussi, M. G. Kong, G. Morfill, and W. Stolz (Cambridge Univ. Press, Cambridge 2012).
D. B. Graves, J. Phys. D 45, 26300 (2012).
M. Yousfi, N. Merbahi, J.P. Sarrette, O. Eichwald, A. Ricard, J. P. Gardou, O. Ducasse, and M. Benhenni, in Biomedical Engineering.Frontiers and Challenges, Ed. by R Fazel-Rezai (InTech, Shanghai, 2011), p. 99.
S. Kelly and M. M. Turner, J. Appl. Phys. 114, 123301 (2013).
E. Sysolyatina, A. Mukhachev, M. Yurova, M. Grushin, V. Karalnik, A. Petryakov, N. Trushkin, S. Ermolaeva, and Y. Akishev, Plasma Process. Polym. 11, 315 (2014).
H. Jablonowski and Th. von Woedtke, Clin. Plasma Med. 3, 42 (2015).
J. Országh, N. J. Mason, Š. Matejčík, and Y. Aranda-Gonzalvo, in Proceedings of the 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases, Novi Sad, 2010, p. 1.
M. J. Pavlovich, Y. Sakiyama, D. S. Clark, and D. B. Graves, Plasma Process. Polym. 10, 1051 (2013).
K. Oehmigen, M. Hahnel, R. Brandenburg, C. Wilke, K.-D. Weltmann, and Th. von Woedtke, Plasma Process. Polym. 7, 250 (2010).
Z. Machala, L. Chladekova, and M. Pelach, J. Phys. D 43, 222001 (2010).
S. Schneider, J.-W. Lackmann, D. Ellerweg, B. Denis, F. Narberhaus, J. E. Bandow, and J. Benedikt, Plasma Process. Polym. 9, 561 (2012).
D. Białoszewski, E. Bocian, B. Bukowska, M. Czajkowska, B. Sokół-Leszczyńska, and S. Tyski, Med. Sci. Monit. 16, MT71–5 (2010).
K. Oehmigen, J. Winter, M. Hahnel, C. Wilke, R. Brandenburg, K.-D. Weltmann, and Th. von Woedtke, Plasma Process. Polym. 8, 904 (2011).
Z. Machala, B. Tarabova, K. Hensel, E. Špetlíková, L. Šikurová, and P. Luke., Plasma Process. Polym. 10, 649 (2013).
P. Lukeš, E. Doležalová, I. Sisrová, and M. Člupek, Plasma Sources Sci. Technol. 23, 015019 (2014).
M. J. Pavlovich, D. S. Clark, D. B. Graves, Plasma Sources Sci. Technol. 23, 065036 (2014).
J. Julák, V. Scholtz, S. Kotúčová, and O. Janoušková, Phys. Med. 28, 230 (2012).
N. Shainsky, D. Dobrynin, U. Ercan, S. Joshi, H. Ji, A. Brooks, G. Fridman, Y. Cho, A. Fridman, and G. Friedman, in Proceedings of the 20th International Symposium on Plasma Chemistry, Philadelphia, 2011.
R. Ma, G. Wang, Y. Tian, K. Wang, J. Zhang, and J. Fang, J. Hazard. Mater. 300, 643 (2015).
Y. Xu, Y. Tian, R. Mab, Q. Liu, and J. Zhang, Food Chem. 197, 436 (2016).
G. Kamgang-Youbi, M. Herry, T. Meylheuc, J.-L. Brisset, M.-N. Bellon-Fontaine, A. Doubla, and M. Naitali, Lett. Appl.Microbiol. 48, 13 (2009).
M. Hoentsch, R. Bussiahn, H. Rebl, C. Bergemann, M. Eggert, M. Frank M, Th. von Woedtke, and B. Nebe, PLoS ONE 9, e104559 (2014).
D. Ziuzina, S. Patil, P.J. Cullen, K. M. Keener, and P. Bourke, J. Appl. Microbiol. 114, 778 (2012)
M. J. Traylor, M. J. Pavlovich, S. Karim, P. Hait, Y. Sakiyama, D. S. Clark, and D. B. Graves, J. Phys. D 44, 472001 (2011).
J.-L. Brisset and E. Hnatiuc, Plasma Chem. Plasma Process. 32, 655 (2012).
A. Kojtari, U. K. Ercan, J. Smith, G. Friedman, R. B. Sensenig, S. Tyagi, S. G. Joshi, H.-F. Ji, and A. D. Brooks, J. Nanomed. Biotherap. Discov. 4, 1000120 (2013).
W. A. Pryor and G. L. Squadrito, Am. J. Physiol. 268, L699 (1995).
J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman, Proc. Natl. Acad. Sci. USA 87, 1620 (1990).
C. Ducrocq, B. Blanchard, B. H. Pignatelli, and H. Ohshima, Cell. Mol. Life Sci. 55, 1068 (1999).
W. H. Koppenol, J. J. Moreno, A. William, W. A. Pryor, H. Ischiropoulos, and J. S. Beckman, Chem. Res. Toxicol. 5, 834 (1992).
E. Bonfoco, D. Krainc, M. Ankarcrona, P. Nicoterat, and S. A. Lipton, Proc. Natl. Acad. Sci. USA 92, 7162 (1992).
R. Laurita, D. Barbieri, M. Gherardi, V. Colombo, and P. Lukes, Clin. Plasma Med. 3, 53 (2015).
P. Attri, Y. H. Kim, D. H. Park, J. H. Park, Y. J. Hong, H. S. Uhm, K.-N. Kim, A. Fridman, and E. H. Choi, Sci. Rep. 5, 9332 (2015).
D. X. Liu, Y. C. Liu, C. Chen, A. J. Yang, D. Li, M. Z. Rong, H. L. Chen, and M. G Kong, Sci. Rep. 6, 23737 (2016).
J. Shen, Y. Tian, Y. Li, R. Ma, Q. Zhang, J. Zhang, and J. Fang, Sci. Rep. 6, 28505 (2016).
http://www.dojindo.eu.com/store/p/456-Cell-Counting-Kit-8.aspx.
M. S. Jhon, H. Eyring, and Y. K. Sung, Chem. Phys. Lett. 13, 36 (1972).
J. Y. Park and Y. N. Lee, J. Phys. Chem. 92, 6294 (1988).
Author information
Authors and Affiliations
Corresponding author
Additional information
The article is published in the original.
Rights and permissions
About this article
Cite this article
Julák, J., Hujacová, A., Scholtz, V. et al. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys. Rep. 44, 125–136 (2018). https://doi.org/10.1134/S1063780X18010075
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063780X18010075