Advertisement

Plasma Physics Reports

, Volume 44, Issue 1, pp 125–136 | Cite as

Contribution to the Chemistry of Plasma-Activated Water

  • J. Julák
  • A. Hujacová
  • V. Scholtz
  • J. Khun
  • K. Holada
Low-Temperature Plasma

Abstract

Plasma-activated water (PAW) was prepared by exposure to nonthermal plasma produced by a positive dc corona discharge in a transient spark regime. The activation of water was performed in atmosphere of various surrounding gases (air, nitrogen, carbon dioxide, and argon). This PAW retains its biological activity, measured on the mouse neuroblastoma cells culture, even after storage for more than one year. The highest hydrogen peroxide content was found for PAWs prepared in the atmospheres of argon or carbon dioxide, whereas the PAWs prepared in air and nitrogen exhibited lower hydrogen peroxide content. The acidity of PAWs mediated by nitric and nitrous acid formation displayed an opposite trend. It is concluded that the long-lasting biological effect of PAW is mediated by hydrogen peroxide in acid milieu only, whereas other possible active components decompose rapidly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Spectrochim. Acta B 61, 2 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, Th. von Woedtke, R. Brandenburg, T. von dem Hagen, and K.-D. Weltmann, J. Phys. D 44, 013002 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    A. Mizuno and Y. Hori, IEEE Trans. Industry Appl. 24, 387 (1988).CrossRefGoogle Scholar
  4. 4.
    M. Laroussi, IEEE Trans. Plasma Sci. 37, 714 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    M. Moreau, N. Orange, and M. G. J. Feuilloley, Biotechnol. Adv. 26, 610 (2008).CrossRefGoogle Scholar
  6. 6.
    M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, New J. Phys. 11, 115012 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    T. Nosenko, T. Shimizu, and G. E. Morfill, New J. Phys. 11, 115013 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, and K. Harding, Plasma Process. Polym. 7, 194 (2010).CrossRefGoogle Scholar
  9. 9.
    J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J. L. Zimmermann, T. Shimizu, and S. Karrer, J. German Soc. Dermatol. 8, 1 (2010).Google Scholar
  10. 10.
    Th. von Woedtke, S. Reuter, K. Masura, and K.-D. Weltmann, Phys. Rep. 530, 291 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    Th. von Woedtke, B. Haertel, K.-D. Weltmann, and U. Lindequist, Pharmazie 68, 492 (2013).Google Scholar
  12. 12.
    J. Schlegel, J. Koritzer, and V. Boxhammer, Clin. Plasma Med. 1, 2 (2013).CrossRefGoogle Scholar
  13. 13.
    B. Haertel, Th. von Woedtke, K.-D. Weltmann, and U. Lindequist, Biomol. Ther. 22, 477 (2014).CrossRefGoogle Scholar
  14. 14.
    S. Cha and Y.-S. Park, Clin. Plasma Med. 2, 4 (2014).CrossRefGoogle Scholar
  15. 15.
    V. Scholtz, J. Pazlarova, H. Soušková, J. Khun, and J. Julák, Biotechnol. Adv. 33, 1108 (2015).CrossRefGoogle Scholar
  16. 16.
    M. Švarcová, J. Julák, V. Hubka, H. Soušková, and V. Scholtz, Prague Med. Rep. 115, 73 (2014).CrossRefGoogle Scholar
  17. 17.
    V. Scholtz, H. Soušková, M. Švarcová, V. Kříha, H. Živná, and J. Julák, Med. Mycol. 55, 492 (2017).Google Scholar
  18. 18.
    Plasma Medicine, Ed. by M. Laroussi, M. G. Kong, G. Morfill, and W. Stolz (Cambridge Univ. Press, Cambridge 2012).Google Scholar
  19. 19.
    D. B. Graves, J. Phys. D 45, 26300 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Yousfi, N. Merbahi, J.P. Sarrette, O. Eichwald, A. Ricard, J. P. Gardou, O. Ducasse, and M. Benhenni, in Biomedical Engineering.Frontiers and Challenges, Ed. by R Fazel-Rezai (InTech, Shanghai, 2011), p. 99.Google Scholar
  21. 21.
    S. Kelly and M. M. Turner, J. Appl. Phys. 114, 123301 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    E. Sysolyatina, A. Mukhachev, M. Yurova, M. Grushin, V. Karalnik, A. Petryakov, N. Trushkin, S. Ermolaeva, and Y. Akishev, Plasma Process. Polym. 11, 315 (2014).CrossRefGoogle Scholar
  23. 23.
    H. Jablonowski and Th. von Woedtke, Clin. Plasma Med. 3, 42 (2015).CrossRefGoogle Scholar
  24. 24.
    J. Országh, N. J. Mason, Š. Matejčík, and Y. Aranda-Gonzalvo, in Proceedings of the 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases, Novi Sad, 2010, p. 1.Google Scholar
  25. 25.
    M. J. Pavlovich, Y. Sakiyama, D. S. Clark, and D. B. Graves, Plasma Process. Polym. 10, 1051 (2013).CrossRefGoogle Scholar
  26. 26.
    K. Oehmigen, M. Hahnel, R. Brandenburg, C. Wilke, K.-D. Weltmann, and Th. von Woedtke, Plasma Process. Polym. 7, 250 (2010).CrossRefGoogle Scholar
  27. 27.
    Z. Machala, L. Chladekova, and M. Pelach, J. Phys. D 43, 222001 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    S. Schneider, J.-W. Lackmann, D. Ellerweg, B. Denis, F. Narberhaus, J. E. Bandow, and J. Benedikt, Plasma Process. Polym. 9, 561 (2012).CrossRefGoogle Scholar
  29. 29.
    D. Białoszewski, E. Bocian, B. Bukowska, M. Czajkowska, B. Sokół-Leszczyńska, and S. Tyski, Med. Sci. Monit. 16, MT71–5 (2010).Google Scholar
  30. 30.
    K. Oehmigen, J. Winter, M. Hahnel, C. Wilke, R. Brandenburg, K.-D. Weltmann, and Th. von Woedtke, Plasma Process. Polym. 8, 904 (2011).CrossRefGoogle Scholar
  31. 31.
    Z. Machala, B. Tarabova, K. Hensel, E. Špetlíková, L. Šikurová, and P. Luke., Plasma Process. Polym. 10, 649 (2013).CrossRefGoogle Scholar
  32. 32.
    P. Lukeš, E. Doležalová, I. Sisrová, and M. Člupek, Plasma Sources Sci. Technol. 23, 015019 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    M. J. Pavlovich, D. S. Clark, D. B. Graves, Plasma Sources Sci. Technol. 23, 065036 (2014).ADSCrossRefGoogle Scholar
  34. 34.
    J. Julák, V. Scholtz, S. Kotúčová, and O. Janoušková, Phys. Med. 28, 230 (2012).CrossRefGoogle Scholar
  35. 35.
    N. Shainsky, D. Dobrynin, U. Ercan, S. Joshi, H. Ji, A. Brooks, G. Fridman, Y. Cho, A. Fridman, and G. Friedman, in Proceedings of the 20th International Symposium on Plasma Chemistry, Philadelphia, 2011.Google Scholar
  36. 36.
    R. Ma, G. Wang, Y. Tian, K. Wang, J. Zhang, and J. Fang, J. Hazard. Mater. 300, 643 (2015).CrossRefGoogle Scholar
  37. 37.
    Y. Xu, Y. Tian, R. Mab, Q. Liu, and J. Zhang, Food Chem. 197, 436 (2016).CrossRefGoogle Scholar
  38. 38.
    G. Kamgang-Youbi, M. Herry, T. Meylheuc, J.-L. Brisset, M.-N. Bellon-Fontaine, A. Doubla, and M. Naitali, Lett. Appl.Microbiol. 48, 13 (2009).CrossRefGoogle Scholar
  39. 39.
    M. Hoentsch, R. Bussiahn, H. Rebl, C. Bergemann, M. Eggert, M. Frank M, Th. von Woedtke, and B. Nebe, PLoS ONE 9, e104559 (2014).ADSCrossRefGoogle Scholar
  40. 40.
    D. Ziuzina, S. Patil, P.J. Cullen, K. M. Keener, and P. Bourke, J. Appl. Microbiol. 114, 778 (2012)CrossRefGoogle Scholar
  41. 41.
    M. J. Traylor, M. J. Pavlovich, S. Karim, P. Hait, Y. Sakiyama, D. S. Clark, and D. B. Graves, J. Phys. D 44, 472001 (2011).ADSCrossRefGoogle Scholar
  42. 42.
    J.-L. Brisset and E. Hnatiuc, Plasma Chem. Plasma Process. 32, 655 (2012).CrossRefGoogle Scholar
  43. 43.
    A. Kojtari, U. K. Ercan, J. Smith, G. Friedman, R. B. Sensenig, S. Tyagi, S. G. Joshi, H.-F. Ji, and A. D. Brooks, J. Nanomed. Biotherap. Discov. 4, 1000120 (2013).Google Scholar
  44. 44.
    W. A. Pryor and G. L. Squadrito, Am. J. Physiol. 268, L699 (1995).Google Scholar
  45. 45.
    J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman, Proc. Natl. Acad. Sci. USA 87, 1620 (1990).ADSCrossRefGoogle Scholar
  46. 46.
    C. Ducrocq, B. Blanchard, B. H. Pignatelli, and H. Ohshima, Cell. Mol. Life Sci. 55, 1068 (1999).CrossRefGoogle Scholar
  47. 47.
    W. H. Koppenol, J. J. Moreno, A. William, W. A. Pryor, H. Ischiropoulos, and J. S. Beckman, Chem. Res. Toxicol. 5, 834 (1992).CrossRefGoogle Scholar
  48. 48.
    E. Bonfoco, D. Krainc, M. Ankarcrona, P. Nicoterat, and S. A. Lipton, Proc. Natl. Acad. Sci. USA 92, 7162 (1992).ADSCrossRefGoogle Scholar
  49. 49.
    R. Laurita, D. Barbieri, M. Gherardi, V. Colombo, and P. Lukes, Clin. Plasma Med. 3, 53 (2015).CrossRefGoogle Scholar
  50. 50.
    P. Attri, Y. H. Kim, D. H. Park, J. H. Park, Y. J. Hong, H. S. Uhm, K.-N. Kim, A. Fridman, and E. H. Choi, Sci. Rep. 5, 9332 (2015).CrossRefGoogle Scholar
  51. 51.
    D. X. Liu, Y. C. Liu, C. Chen, A. J. Yang, D. Li, M. Z. Rong, H. L. Chen, and M. G Kong, Sci. Rep. 6, 23737 (2016).ADSCrossRefGoogle Scholar
  52. 52.
    J. Shen, Y. Tian, Y. Li, R. Ma, Q. Zhang, J. Zhang, and J. Fang, Sci. Rep. 6, 28505 (2016).ADSCrossRefGoogle Scholar
  53. 53.
  54. 54.
  55. 55.
    M. S. Jhon, H. Eyring, and Y. K. Sung, Chem. Phys. Lett. 13, 36 (1972).ADSCrossRefGoogle Scholar
  56. 56.
    J. Y. Park and Y. N. Lee, J. Phys. Chem. 92, 6294 (1988).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • J. Julák
    • 1
  • A. Hujacová
    • 1
  • V. Scholtz
    • 2
  • J. Khun
    • 2
  • K. Holada
    • 1
  1. 1.Institute of Immunology and Microbiology, First Faculty of MedicineCharles University and General University HospitalPraha 2Czech Republic
  2. 2.Department of Physics and MeasurementsUniversity of Chemistry and TechnologyPraha 6Czech Republic

Personalised recommendations