Skip to main content
Log in

Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kroll, J. Schablinski, D. Block, and A. Piel, Phys. Plasmas 17, 13702 (2010).

    Article  ADS  Google Scholar 

  2. O. Ishihara and S. V. Vladimirov, Phys. Plasmas 4, 69 (1997).

    Article  ADS  Google Scholar 

  3. K. Takahashi, T. Oishi, K. Shimomai, Y. Hayashi, and S. Nishino, Phys. Rev. E 58, 7805 (1998).

    Article  ADS  Google Scholar 

  4. D. S. Lemons, M. S. Murillo, W. Daughton, and D. Winske, Phys. Plasmas 7, 2306 (2000).

    Article  ADS  Google Scholar 

  5. M. Nambu, S. V. Vladimirov, and P. K. Shukla, Phys. Lett. A 203, 40 (1995).

    Article  ADS  Google Scholar 

  6. S. Bhattacharjee and N. Das, Phys. Plasmas 19, 103707 (2012).

    Article  ADS  Google Scholar 

  7. A. K. Mukhopadhyay and J. Goree, Phys. Rev. E 90, 013102 (2014).

    Article  ADS  Google Scholar 

  8. A. Melzer, V. A. Schweigert, and A. Piel, Phys. Rev. Lett. 83, 3194 (1999).

    Article  ADS  Google Scholar 

  9. L. J. Hou, Y. N. Wang, and Z. L. Miškovìc, Phys. Lett. A 292, 129 (2001).

    Article  ADS  Google Scholar 

  10. V. Steinberg, R. Sütterlin, A. V. Ivlev, and G. Morfill, Phys. Rev. Lett. 86, 4540 (2001).

    Article  ADS  Google Scholar 

  11. S. Ranganathan, R. E. Johnson, and C. E. Woodward, Phys. Chem. Liquids 14, 123 (2003).

    Article  Google Scholar 

  12. T. Ott, M. Bonitz, Z. Donko, and P. Hartmann, Phys. Rev. E 78, 026409 (2008).

    Article  ADS  Google Scholar 

  13. T. Ott and M. Bonitz, Contrib. Plasma Phys. 49, 760 (2009).

    Article  ADS  Google Scholar 

  14. T. Ott and M. Bonitz, Phys. Rev. Lett. 107, 1350031 (2011).

    Article  Google Scholar 

  15. M. Begum and N. Das, Eur. Phys. J. Plus 131, 46 (2016).

    Article  Google Scholar 

  16. P. Ludwig, K. Hanno, and M. Bonitz, Plasma Phys. Controlled Fusion 54, 045011 (2012).

    Article  ADS  Google Scholar 

  17. O. S. Vaulina, X. G. Adamovich, O. F. Petrov, and V. E. Fortov, Phys. Rev. E 77, 066403 (2008).

    Article  ADS  Google Scholar 

  18. O. S. Vaulina, X. G. Adamovich, O. F. Petrov, and V. E. Fortov, Phys. Rev. E 77, 066404 (2008).

    Article  ADS  Google Scholar 

  19. Yu. V. Khrustalyov and O. S. Vaulina, Phys. Rev. E 85, 046405 (2012).

    Article  ADS  Google Scholar 

  20. H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994).

    Article  ADS  Google Scholar 

  21. S. Hamaguchi and R. T. Farouki, and D. H. E. Dubin, Phys. Rev. E 56, 4671 (1997).

    Article  ADS  Google Scholar 

  22. X. H. Zheng and J. C. Earnshaw, Phys. Rev. Lett. 75, 4214 (1995).

    Article  ADS  Google Scholar 

  23. W. K. Qi, Z. Wang, Y, Han, and Y. Chen, J. Chem. Phys. 133, 234508 (2010).

    Article  ADS  Google Scholar 

  24. P. Epstein, Phys. Rev. 23, 710 (1924).

    Article  ADS  Google Scholar 

  25. U. Konopka, PhD Thesis (Ruhr-Universität, Bochum, 2000).

    Google Scholar 

  26. I. H. Hutchinson and C. B. Haakonsen, Phys. Plasmas 20, 083701 (2013).

    Article  ADS  Google Scholar 

  27. P. Ludwig, W. J. Miloch, Hanno Kählert, and M. Bonitz, New J. Phys. 14, 053016 (2012).

    Article  ADS  Google Scholar 

  28. P. Bezbaruah and N. Das, Phys. Plasmas 23, 043701 (2016).

    Article  ADS  Google Scholar 

  29. S. A. Maiorov and B. A. Klumov, Bull. Lebedev Phys. Inst. 40, 285 (2013).

    Article  ADS  Google Scholar 

  30. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge, 1995).

    MATH  Google Scholar 

  31. O. S. Vaulina and S. V. Vladimirov, Phys. Plasmas 9, 835 (2002).

    Article  ADS  Google Scholar 

  32. S. A. Khrapak, O. S. Vaulina, and G. E. Morfill, Phys. Plasmas 19, 034503 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Begum.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, M., Das, N. Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System. Plasma Phys. Rep. 44, 118–124 (2018). https://doi.org/10.1134/S1063780X18010038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18010038

Navigation