Skip to main content
Log in

Some Results from Studies of Microwave Discharges in Liquid Heavy Hydrocarbons

  • Applied Physics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Some results from studies of microwave discharges in heavy hydrocarbons are presented. Microwave energy was introduced into liquid hydrocarbon via a coaxial line. The pressure above the liquid surface was equal to the atmospheric pressure. The discharge was ignited in a mixture of argon and hydrocarbon vapor. Argon was supplied through a channel in the central conductor of the coaxial line. The emission spectra of discharges in different liquid hydrocarbons were studied. It is shown that the emission spectra mainly consist of sequences of Swan bands, while radiation of other plasma components is on the noise level. Spectra of plasma emission are presented for discharges in liquid n-heptane, nefras, and C-9 oil used to produce chemical fibers. The rotational (gas) and vibrational temperatures are determined by processing the observed spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J. P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, et al., J. Phys. D 45, 253001 (2012).

    Article  ADS  Google Scholar 

  2. P. Bruggeman and C. Leys, J. Phys. D 42, 053001 (2009).

    Article  ADS  Google Scholar 

  3. Y. Yang, Y. I. Cho, and A. Fridman, Plasma Discharge in Liquid: Water Treatment and Applications (CRC, Boca Raton, FL, 2012).

    Google Scholar 

  4. W. G. Graham and K. R. Stalder, J. Phys. D 44, 174037 (2011).

    Article  ADS  Google Scholar 

  5. Y. Hattori, S. Mukasa, S. Nomura, and H. Toyota, J. Appl. Phys. 107, 063305 (2010).

    Article  ADS  Google Scholar 

  6. T. Ishijima, H. Sugiura, R. Saito, H. Toyoda, and H. Sugai, Plasma Sources Sci. Technol. 19, 015010 (2010).

    Article  ADS  Google Scholar 

  7. B. Wang, B. Sun, X. Zhu, Z. Yan, Y. Liu, and H. Liu, J. Phys. Conf. Ser. 418, 012099 (2013).

    Article  Google Scholar 

  8. B. Wang, B. Sun, X. Zhu, Z. Yan, Y. Liu, and H. Liu, Contrib. Plasma Phys. 53, 697 (2013).

    Article  ADS  Google Scholar 

  9. S. Nomura, H. Toyota, S. Mukasa, Y. Takahashi, T. Maehara, A. Kawashima, and H. Yamashita, Appl. Phys. Express. 1, 046002 (2008).

    Article  ADS  Google Scholar 

  10. T. Ishijima, H. Hotta, and H. Sugai, Appl. Phys. Lett. 91, 121501 (2007).

    Article  ADS  Google Scholar 

  11. T. Ishijima, H. Sugiura, R. Satio, H. Toyada, and H. Sugai, Plasma Sources Sci. Technol. 19, 015010 (2010).

    Article  ADS  Google Scholar 

  12. T. Ishijima, K. Nosaka, Y. Tanaka, Y. Uesugi, Y. Goto, and H. Horibe, Appl. Phys. Lett. 103, 142101 (2013).

    Article  ADS  Google Scholar 

  13. S. Nomura and H. Toyota, Appl. Phys. Lett. 83, 4503 (2003).

    Article  ADS  Google Scholar 

  14. S. Nomura, H. Toyota, M. Tawara, and H. Yamashota, Appl. Phys. Lett. 88, 231502 (2006).

    Article  ADS  Google Scholar 

  15. S. Nomura, H. Toyota, S. Mukasa, H. Yamashita, and T. Maehara, Appl. Phys. Lett. 88, 211503 (2006).

    Article  ADS  Google Scholar 

  16. S. Nomura, H. Toyota, S. Mukasa, H. Yamashita, T. Maehara, and A. Kawashima, J. Appl. Phys. 106, 073306 (2009).

    Article  ADS  Google Scholar 

  17. H. Toyota, S. Nomura, Y. Takahashi, and S. Mukasa, Diamond Relat. Mater. 17, 1902 (2008).

    Article  ADS  Google Scholar 

  18. Yu. A. Lebedev, V. S. Konstantinov, M. Yu. Yablokov, A. N. Shchegolikhin, and N. M. Surin, High Energy Chem. 48, 385 (2014).

    Article  Google Scholar 

  19. N. N. Buravtsev, V. S. Konstantinov, Yu. A. Lebedev, and T. B. Mavlyudov, in Proceedings of the VIII International Workshop “Microwave Discharges: Fundamentals and Applications,” Zvenigorod, 2012, Ed. by Yu. A Lebedev, p. 167.

  20. H. Toyota, S. Nomura, and S. Mukasa, Int. J. Mater. Sci. Appl. 2 (3), 83 (2013).

    Google Scholar 

  21. Y. Hattori, S. Mukasa, H. Toyota, H. Yamashita, and S. Nomura, Surf. Coat. Technol. 206, 2140 (2012).

    Article  Google Scholar 

  22. E. Camerotto, R. De Schepper, and A. Y. Nikiforov, J. Phys. D 45, 435201 (2012).

    Article  Google Scholar 

  23. Yu. A. Lebedev, I. L. Epstein, V. A. Shakhatov, E. V. Yusupova, and V. S. Konstantinov, High Temp. 52, 319 (2014).

    Article  Google Scholar 

  24. A. V. Tatarinov, Yu. A. Lebedev, and I. L. Epstein, High Energy Chem. 50, 144 (2016).

    Article  Google Scholar 

  25. Yu. A. Lebedev, A. V. Tatarinov, I. L. Epstein, and K. A. Averin, Plasma Chem. Plasma Process. 36, 535 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Averin.

Additional information

Original Russian Text © K.A. Averin, Yu.A. Lebedev, V.A. Shakhatov, 2016, published in Prikladnaya Fizika, 2016, No. 2, pp. 41–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averin, K.A., Lebedev, Y.A. & Shakhatov, V.A. Some Results from Studies of Microwave Discharges in Liquid Heavy Hydrocarbons. Plasma Phys. Rep. 44, 145–148 (2018). https://doi.org/10.1134/S1063780X18010014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18010014

Navigation