Skip to main content
Log in

CXSFIT Code Application to Process Charge-Exchange Recombination Spectroscopy Data at the T-10 Tokamak

  • Plasma Diagnostics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The applicability of the CXSFIT code to process experimental data from Charge-eXchange Recombination Spectroscopy (CXRS) diagnostics at the T-10 tokamak is studied with a view to its further use for processing experimental data at the ITER facility. The design and operating principle of the CXRS diagnostics are described. The main methods for processing the CXRS spectra of the 5291-Å line of C5+ ions at the T-10 tokamak (with and without subtraction of parasitic emission from the edge plasma) are analyzed. The method of averaging the CXRS spectra over several shots, which is used at the T-10 tokamak to increase the signal-to-noise ratio, is described. The approximation of the spectrum by a set of Gaussian components is used to identify the active CXRS line in the measured spectrum. Using the CXSFIT code, the ion temperature in ohmic discharges and discharges with auxiliary electron cyclotron resonance heating (ECRH) at the T-10 tokamak is calculated from the CXRS spectra of the 5291-Å line. The time behavior of the ion temperature profile in different ohmic heating modes is studied. The temperature profile dependence on the ECRH power is measured, and the dynamics of ECR removal of carbon nuclei from the T-10 plasma is described. Experimental data from the CXRS diagnostics at T-10 substantially contribute to the implementation of physical programs of studies on heat and particle transport in tokamak plasmas and investigation of geodesic acoustic mode properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Afrosimov, Yu. S. Gordeev, and A. N. Zinov’ev, Sov. Tech. Phys. Lett. 3, 39 (1977).

    Google Scholar 

  2. V. V. Afrosimov, Yu. S. Gordeev, A. N. Zinov’ev, and A. A. Korotkov, JETP Lett. 28, 500 (1978).

    ADS  Google Scholar 

  3. A. N. Zinov’ev, A. A. Korotkov, E. R. Krzhizhanovskii, V. V. Afrosimov, and Yu. S. Gordeev, JETP Lett. 32, 539 (1980).

    ADS  Google Scholar 

  4. E. L. Berezovskii, M. M. Berezovskaya, A. B. Izvozshchikov, and V. A. Krupin, Sov. Tech. Phys. Lett. 8, 594 (1982).

    Google Scholar 

  5. A. N. Zinov’ev and V. V. Afrosimov, in Plasma Diagnostics, Ed. by M. I. Pergament (Energoizdat, Moscow, 1990), Vol. 7, p. 56 [in Russian].

    Google Scholar 

  6. R. J. Fonck, D. S. Darrow, and K. P. Jaehnug, Phys. Rev. A 29, 6 (1984).

    Article  ADS  Google Scholar 

  7. R. C. Isler, Plasma Phys. Controlled Fusion 36, 171 (1994).

    Article  ADS  Google Scholar 

  8. Atomic Data and Analysis Structure. http://www.adas.ac.uk/.

  9. A. D. Whiteford, M. G. von Hellermann, L. D. Horton, and K.-D. Zastrow, CXSFIT User Manuel. http://www.adas.ac.uk/notes/adas_r07-01.pdf.

  10. M. G. von Hellermann, G. Bertschinger, W. Biel, C. Giroud, R. Jaspers, C. Jupen, O. Marchuk, M.O’Mullane, H. P. Summers, A. Whiteford, and K.-D. Zastrow, Phys. Scr. T120, 19 (2005).

    Article  ADS  Google Scholar 

  11. L. A. Artsimovich, A. V. Glukhov, and M. P. Petrov, JETP Lett. 11, 304 (1970).

    ADS  Google Scholar 

  12. L. Klyuchnikov, V. Krupin, K. Korobov, A. Nemets, A. Borshegovskii, A. Y. Dnestrovskij, A. Gorbunov, V. Korolev, S. Krylov, N. Naumenko, V. Nikulin, I. Roy, G. Tilinin, and S. Tugarinov, in Proceedings of the 25th IAEA Fusion Energy Conference, St. Petersburg, 2014, Paper EX/P1-44.

    Google Scholar 

  13. A. V. Melnikov, L. G. Eliseev, S. V. Perfilov, S. E. Lysenko, R. V. Shurygin, V. N. Zenin, S. A. Grashin, L. I. Krupnik, A. S. Kozachek, R. Yu. Solomatin, A. G. Elfimov, A. I. Smolyakov, M. V. Ufimtsev, and The HIBP Team, Nucl. Fusion 55, 063001 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Serov.

Additional information

Original Russian Text © S.V. Serov, S.N. Tugarinov, L.A. Klyuchnikov, V.A. Krupin, M. von Hellermann, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 12, pp. 957–966.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serov, S.V., Tugarinov, S.N., Klyuchnikov, L.A. et al. CXSFIT Code Application to Process Charge-Exchange Recombination Spectroscopy Data at the T-10 Tokamak. Plasma Phys. Rep. 43, 1123–1131 (2017). https://doi.org/10.1134/S1063780X17120054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17120054

Navigation