Skip to main content
Log in

Plasma Decay in the Afterglow of High-Voltage Nanosecond Discharges in Unsaturated and Oxygenated Hydrocarbons

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results of experimental and theoretical study of plasma decay in the afterglow of high-voltage nanosecond discharges in gaseous ethylene and dimethyl ether at room temperature and pressures from 2 to 20 Torr are presented. Using a microwave interferometer, the time behavior of the electron density in the range from 2 × 1010 to 3 × 1012 cm–3 during plasma decay is investigated. By processing the experimental data, the effective coefficients of electron–ion recombination as functions of the gas pressure are obtained. It is found that these coefficients substantially exceed the recombination coefficients of simple hydrocarbon ions. This distinction, as well as the increase in the effective recombination coefficient with pressure, is explained by the formation of cluster ions in three-body collisions, which recombine with electrons more efficiently than simple molecular ions. The coefficients of three-body conversion of simple molecular ions into cluster ions in the plasmas of ethylene and dimethyl ether, as well as the coefficients of recombination of electrons with cluster ions in these gases, are determined by analyzing the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Phys. Usp. 37, 247 (1994).

    Article  ADS  Google Scholar 

  2. S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, D. V. Zatsepin, and A. Yu. Starikovskii, Plasma Sources Sci. Technol. 10, 344 (2001).

    Article  ADS  Google Scholar 

  3. S. M. Starikovskaia and A. Yu. Starikovskiy, in Runaway Electrons Preionized Diffuse Discharges, Ed. by V. F. Tarasenko (Nova Science, New York, 2014), Chap. 15.

    Google Scholar 

  4. A. Starikovskiy and N. Aleksandrov, Prog. Energy Combust. Sci. 39, 61 (2013).

    Article  Google Scholar 

  5. S. M. Starikovskaia, J. Phys. D 47, 353001 (2014).

    Article  ADS  Google Scholar 

  6. Y. Ju and W. Sun, Prog. Energy Combust. Sci. 48, 21 (2015).

    Article  Google Scholar 

  7. D. V. Roupassov, A. A. Nikipelov, M. M. Nudnova, and A. Yu. Starikovskii, AIAA J. 47, 168 (2009).

    Article  ADS  Google Scholar 

  8. A. Starikovskiy and N. Aleksandrov, Aeronautics and Astronautics, Ed. by M. Mulder (InTech, Rijeka, 2011), p. 55.

    Google Scholar 

  9. N. L. Aleksandrov, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 40, 4493 (2007).

    Article  ADS  Google Scholar 

  10. N. L. Aleksandrov, E. M. Anokhin, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, M. M. Nudnova, S. M. Starikovskaya, and A. Yu. Starikovskii, Plasma Phys. Rep. 38, 179 (2012).

    Article  ADS  Google Scholar 

  11. N. L. Aleksandrov, E. M. Anokhin, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, M. M. Nudnova, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 45, 255202 (2012).

    Article  ADS  Google Scholar 

  12. E. M. Anokhin, M. A. Popov, I. V. Kochetov, N. L. Aleksandrov, and A. Yu. Starikovskii, Plasma Phys. Rep. 42, 59 (2016).

    Article  ADS  Google Scholar 

  13. T. J. Millar, Plasma Sources Sci. Technol. 24, 043001 (2015).

    Article  ADS  Google Scholar 

  14. Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov: Introductional Volume, (Nauka, Moscow, 2000), Part III, Chap. 8 [in Russian].

  15. A. B. Fialkov, Prog. Energy Combust. Sci. 23, 399 (1997).

    Article  Google Scholar 

  16. J. L. Fox, in Dissociative Recombination: Theory, Experiment and Applications III, Ed. by D. Zajfman, J. B. A. Mitchell, D. Schwalm, and B. Rowe (World Scientific, Singapore, 1996), p. 40.

    Google Scholar 

  17. R. K. Janev and D. Reiter, Phys. Plasmas 9, 4071 (2002).

    Article  ADS  Google Scholar 

  18. R. K. Janev and D. Reiter, Phys. Plasmas 11, 780 (2004).

    Article  ADS  Google Scholar 

  19. J. B. A. Mitchell, Phys. Rep. 186, 215 (1990).

    Article  ADS  Google Scholar 

  20. A. I. Florescu-Mitchell and J. B. A. Mitchell, Phys. Rep. 430, 277 (2006).

    Article  ADS  Google Scholar 

  21. M. Larsson and A. E. Orel, Dissociative Recombination of Molecular Ions (Cambridge Univ. Press, Cambridge, 2008).

    Book  Google Scholar 

  22. E. M. Anokhin, M. A. Popov, I. V. Kochetov, A. Yu. Starikovskiy, and N. L. Aleksandrov, Plasma Sources Sci. Technol. 25, 044006 (2016).

    Article  ADS  Google Scholar 

  23. I. N. Kosarev, S. V. Kindysheva, R. M. Momot, E. A. Plastinin, N. L. Aleksandrov, and A. Yu. Starikovskiy, Combust. Flame 165, 259 (2016).

    Article  Google Scholar 

  24. T. A. Semelsberger, R. L. Borup, and H. L. Greene, J. Power Sources 156, 497 (2006).

    Article  ADS  Google Scholar 

  25. V. Gururajan and F. N. Egolfoipoulos, Proc. Combust. Inst. 36, 4165 (2017).

    Article  Google Scholar 

  26. W. Sun, S. H. Won, and Y. Ju, Combust. Flame 161, 2054 (2014).

    Article  Google Scholar 

  27. N. B. Anikin, S. M. Starikovskaya, and A. Yu. Starikovskii, Plasma Phys. Rep. 30, 1028 (2004).

    Article  ADS  Google Scholar 

  28. M. A. Heald and C. B. Wharton, Plasma Diagnostics with Microwaves (Wiley, New York, 1965).

    Google Scholar 

  29. N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, and A. G. Sukharev, EEDF: The Software Package for Calculations of the Electron Energy Distribution Function in Gas Mixtures. http://www.lxcat.laplace.univtlse. fr/software/EEDF/.

  30. M. Hayashi, in Nonequilibrium Processes in Partially Ionized Gases. NATO ASI Series (Series B: Physics), Ed. by M. Capitelli and J. N. Bardsley (Springer, Boston, MA, 1990), Vol. 220, p. 333.

    Book  Google Scholar 

  31. GAS: MAGBOLTZ. http://garfield.web.cern.ch/garfield/help/garfield_41.html.

  32. C. Rebrin-Rowe, L. Lehfaoui, B. R. Rowe, and J. B. A. Mitchell, J. Chem. Phys. 108, 7185 (1998).

    Article  ADS  Google Scholar 

  33. C. Rebrin-Rowe, T. Mostefaoui, S. Laube, and J. B. A. Mitchell, J. Chem. Phys. 113, 3039 (2000).

    Article  ADS  Google Scholar 

  34. N. G. Adams and D. Smith, Chem. Phys. Lett. 144, 11 (1988).

    Article  ADS  Google Scholar 

  35. J. Glosik, R. Plasil, P. Zakouril, and V. Poterya, J. Phys. B 34, 2781 (2001).

    Article  ADS  Google Scholar 

  36. J. Glosik and R. Plasil, J. Phys. B 33, 4483 (2000).

    Article  ADS  Google Scholar 

  37. http://webbook.nist.gov.

  38. V. G. Anicich, J. Phys. Chem. Ref. Data 22, 1469 (1993).

    Article  ADS  Google Scholar 

  39. Yu. A. Lebedev and I. L. Epshtein, High Temp. 36, 510 (1998).

    Google Scholar 

  40. B. M. Smirnov, Complex Ions (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Aleksandrov.

Additional information

Original Russian Text © E.M. Anokhin, M.A. Popov, I.V. Kochetov, A.Yu. Starikovskii, N.L. Aleksandrov, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 12, pp. 1029–1039.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anokhin, E.M., Popov, M.A., Kochetov, I.V. et al. Plasma Decay in the Afterglow of High-Voltage Nanosecond Discharges in Unsaturated and Oxygenated Hydrocarbons. Plasma Phys. Rep. 43, 1198–1207 (2017). https://doi.org/10.1134/S1063780X17120017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17120017

Navigation