Skip to main content
Log in

Raman amplification of laser pulses near the threshold for plasma wave breaking

  • Nonlinear Phenomena
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Equations are derived for the amplitudes of counter-propagating laser pulses near the threshold for plasma wave breaking, which allow one to describe laser pulses with durations on the order of the plasma oscillation period. In the quasi-monochromatic approximation, they take the form of conventional threewave equations with an additional nonlinearity for the plasma wave. The amplitudes of the amplified laser pulses estimated using these equations agree with results obtained by solving the complete equations. It is shown that Raman amplification of a weak quasi-monochromatic signal (plasma noise) in rarified plasma is significantly suppressed. At the same time, according to numerical simulations, the amplification of laser pulses with durations on the order of the plasma oscillation period is suppressed insignificantly. This result opens new prospects in the application of Raman compression of laser pulses without additional frequency modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).

    Article  ADS  Google Scholar 

  2. V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999).

    Article  ADS  Google Scholar 

  3. V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Plasmas 7, 2232 (2000).

    Article  ADS  Google Scholar 

  4. Y. Ping, W. Cheng, S. Suckewer, D. S. Clark, and N. J. Fisch, Phys. Rev. Lett. 92, 175007 (2004).

    Article  ADS  Google Scholar 

  5. W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. J. Fisch, M. S. Hur, and J. S. Wurtele, Phys. Rev. Lett. 94, 045003 (2005).

    Article  ADS  Google Scholar 

  6. J. Ren, S. Li, A. Morozov, S. Suckewer, N. A. Yampolsky, V. M. Malkin, and N. J. Fisch, Phys. Plasmas 15, 056702 (2008).

    Article  ADS  Google Scholar 

  7. C. H. Pai, M. W. Lin, L. C. Ha, S. T. Huang, Y.C.Tsou, H. H. Chu, J. Y. Lin, J. Wang, and S. Y. Chen, Phys. Rev. Lett. 101, 065005 (2008).

    Article  ADS  Google Scholar 

  8. A. A. Balakin, D. V. Kartashov, A. M. Kiselev, S. A. Skobelev, A. N. Stepanov, and G. M. Fraiman, JETP Lett. 80, 12 (2004).

  9. G. M. Fraiman, N. A. Yampolsky, V. M. Malkin, and N. J. Fisch, Phys. Plasmas 9, 3617 (2002).

    Article  ADS  Google Scholar 

  10. V. M. Malkin and N. J. Fisch, Eur. Phys. J. Special Topics 223, 1157 (2014).

    Article  ADS  Google Scholar 

  11. V. M. Malkin, Z. Toroker, and N. J. Fisch, Phys. Plasmas 21, 093112 (2014).

    Article  ADS  Google Scholar 

  12. V. M. Malkin, Z. Toroker, and N. J. Fisch, Phys. Rev. E 90, 063110 (2014).

    Article  ADS  Google Scholar 

  13. I. Barth, Z. Toroker, A. A. Balakin, and N. J. Fisch, Phys. Rev. E 93, 063210 (2016).

    Article  ADS  Google Scholar 

  14. A. A. Balakin, G. M. Fraiman, N. J. Fisch, and S. Suckewer, Phys. Rev. E 72, 036401 (2005).

    Article  ADS  Google Scholar 

  15. Y. A. Tsidulko, V. M. Malkin, and N. J. Fisch, Phys. Rev. Lett. 88, 235004 (2002).

    Article  ADS  Google Scholar 

  16. A. A. Solodov, V. M. Malkin, and N. J. Fisch, Phys. Plasmas 10, 2540 (2003).

    Article  ADS  Google Scholar 

  17. A. A. Balakin, I. Y. Dodin, G. M. Fraiman, and N. J. Fisch, Phys. Plasmas 23, 083115 (2016).

    Article  ADS  Google Scholar 

  18. V. M. Malkin, N. J. Fisch, and J. S. Wurtele, Phys. Rev. E 75, 026404 (2007).

    Article  ADS  Google Scholar 

  19. A. A. Balakin, N. J. Fisch, G. M. Fraiman, V. M. Malkin, and Z. Toroker, Phys. Plasmas 18, 102311 (2011).

    Article  ADS  Google Scholar 

  20. M. S. Hur, R. R. Lindberg, A. E. Charman, J. S. Wurtele, and H. Suk, Phys. Rev. Lett. 95, 115003 (2005).

    Article  ADS  Google Scholar 

  21. S. Depierreux, V. Yahia, C. Goyon, G. Loisel, P.-E. Masson-Laborde, N. Borisenko, A. Orekhov, O. Rosmej, T. Rienecker, and C. Labaune, Nature Commun. 5, 4158 (2014).

    Article  Google Scholar 

  22. R. M. G. M. Trines, F. Fiuza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, Nature Phys. 7, 87 (2011).

    Article  ADS  Google Scholar 

  23. N. A. Yampolsky, V. M. Malkin, and N. J. Fisch, Phys. Rev. E 69, 036401 (2004).

    Article  ADS  Google Scholar 

  24. Z. Toroker, V. M. Malkin, A. A. Balakin, G. M. Fraiman, and N. J. Fisch, Phys. Plasmas 19, 083110 (2012).

    Article  ADS  Google Scholar 

  25. Z. Toroker, V. M. Malkin, and N. J. Fisch, Phys. Rev. Lett. 109, 085003 (2012).

    Article  ADS  Google Scholar 

  26. D. S. Clark and N. J. Fisch, Phys. Plasmas 10, 3363 (2003).

    Article  ADS  Google Scholar 

  27. Z. Toroker, V. M. Malkin, and N. J. Fisch, Phys. Plasmas 21, 113110 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Balakin.

Additional information

Original Russian Text © A.A. Balakin, D.S. Levin, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 6, pp. 569–576.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakin, A.A., Levin, D.S. Raman amplification of laser pulses near the threshold for plasma wave breaking. Plasma Phys. Rep. 43, 677–684 (2017). https://doi.org/10.1134/S1063780X17060034

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17060034

Navigation