Skip to main content
Log in

Small-amplitude shock waves and double layers in dusty plasmas with opposite polarity charged dust grains

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Theoretical investigation is carried out for understanding the properties of nonlinear dust-acoustic (DA) waves in an unmagnetized dusty plasma whose constituents are massive, micron-sized, positive and negatively charged inertial dust grains along with q (nonextensive) distributed electrons and ions. The reductive perturbation method is employed in order to derive two types of nonlinear dynamical equations, namely, Burgers equation and modified Gardner equation (Gardner equation with dissipative term). They are also numerically analyzed to investigate the basic features (viz., polarity, amplitude, width, etc.) of shock waves and double layers. It has been observed that the effects of nonextensivity, opposite polarity charged dust grains, and different dusty plasma parameters have significantly modified the fundamental properties of shock waves and double layers. The results of this investigation may be used for researches of the nonlinear wave propagation in laboratory and space plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Mamun and P. K. Shukla, Geophys. Res. Lett. 29, 1870 (2002).

    Article  ADS  Google Scholar 

  2. P. K. Shukla, G. T. Birk, and G. E. Morfill, Phys. Scr. 56, 299 (1997).

    Article  ADS  Google Scholar 

  3. D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).

    Article  ADS  Google Scholar 

  4. C. K. Geortz, Rev. Geophys. 27, 271 (1989).

    Article  ADS  Google Scholar 

  5. M. S. Barnes, J. H. Keller, J. C. Forster, J. A. O’Neill, and D. K. Coultas, Phys. Rev. Lett. 68, 313 (1992).

    Article  ADS  Google Scholar 

  6. A. Barkan, N. D’Angelo, and R. L. Merlino, Phys. Rev. Lett. 73, 3093 (1994).

    Article  ADS  Google Scholar 

  7. N. Meyer-Vernet, Astron. Astrophys. 105, 98 (1982).

    ADS  Google Scholar 

  8. M. Horanyi, G. E. Morfill, and E. Grun, Nature 363, 144 (1993).

    Article  ADS  Google Scholar 

  9. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  10. V. W. Chow, D. A. Mendis, and M. J. Rosenberg, J. Geophys. Res. Space Phys. 98, 19065 (1993).

    Article  ADS  Google Scholar 

  11. O. Havnes, J. Troim, T. Blix, W. Mortensen, L. I. Naesheim, E. Thrane, and T. Tonnesen, J. Geophys. Res. 101, 10839 (1996).

    Article  ADS  Google Scholar 

  12. A. A. Mamun, Phys. Rev. E 77, 026406 (2008).

    Article  ADS  Google Scholar 

  13. B. Smiley, S. Robertson, M. Horanyi, T. Blix, M. Rapp, R. Latteck, and J. Gumbel, Geophys. Res. Lett. 108, 8444 (2003).

    Article  Google Scholar 

  14. B. A. Klumov, S. I. Popel, and R. Bingham, JETP Lett. 72, 364 (2000).

    Article  ADS  Google Scholar 

  15. N. N. Rao, P. K. Sukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  16. S. K. El-Labany and W. F. El-Taibany, Phys. Plasmas 10, 989 (2003).

    Article  ADS  Google Scholar 

  17. S. K. El-Labany and W. F. El-Taibany, Phys. Plasmas 10, 4685 (2003).

    Article  ADS  Google Scholar 

  18. P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  19. F. Melandso, Phys. Plasmas 3, 3890 (1996).

    Article  ADS  Google Scholar 

  20. B. Sahu and M. Tribeche, Astrophys. Space Sci. 338, 259 (2012).

    Article  ADS  Google Scholar 

  21. A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).

    Article  ADS  Google Scholar 

  22. A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Plasmas 3, 702 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Emamuddin, S. Yasmin, and A. A. Mamun, Phys. Plasmas 20, 043705 (2013).

    Article  ADS  Google Scholar 

  24. A. A. Mamun and P. K. Shukla, Phys. Lett. A 290, 173 (2001).

    Article  ADS  Google Scholar 

  25. A. A. Mamun, Astrophys. Space Sci. 268, 443 (1999).

    Article  ADS  Google Scholar 

  26. A. A. Mamun, Phys. Lett. 372, 884 (2008).

    Article  Google Scholar 

  27. P. K. Shukla and A. A. Mamun, New J. Phys. 5, 17 (2003).

    Article  ADS  Google Scholar 

  28. A. M. Mirza, S. Mahmood, N. Jehan, and N. Ali, Phys. Scr. 75, 755 (2007).

    Article  ADS  Google Scholar 

  29. F. Sayed and A. A. Mamun, Phys. Plasmas 14, 014501 (2007).

    Article  ADS  Google Scholar 

  30. A. Rahman, A. A. Mamun, and S. M. Khurshed Alam, Astrophys. Space Sci. 315, 243 (2008).

  31. A. A. Mamun and A. Mannan, JETP Lett. 94, 356 (2011).

    Article  ADS  Google Scholar 

  32. W. M. Moslem, R. Sabry, S. K. El-Labany, and P. K. Shukla, Phys. Rev. E 84, 066402 (2011).

    Article  ADS  Google Scholar 

  33. E. Saberian and A. Esfandyari-Kalejahi, Phys. Rev. E 87, 053112 (2013).

  34. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

  35. S. A. Ema, M. Ferdousi, S. Sultana, and A. A. Mamun, Eur. Phys. J. Plus 130, 46 (2015).

    Article  Google Scholar 

  36. A. R. Plastino and A. Plastino, Phys. Lett. A 174, 384 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  37. G. Gervino, A. Lavagno, and D. Pigato, Cent. Eur. J. Phys. 10, 594 (2012).

    Google Scholar 

  38. A. Lavagno and D. Pigato, Eur. Phys. J. A 47, 52 (2011).

    Article  ADS  Google Scholar 

  39. C. Féron and J. Hjorth, Phys. Rev. E 77, 022106 (2008).

    Article  ADS  Google Scholar 

  40. J. R. Asbridge, S. J. Bame, and I. B. Strong, J. Geophys. Res. 73, 5777 (1968).

    Article  ADS  Google Scholar 

  41. S. M. Krimigis, J. F. Carbary, E. P. Keath, T. P. Armstrong, L. J. Lanzerotti, and G. Gloeckler, J. Geophys. Res. 88, 8871 (1983).

  42. S. V. Vladimirov, and K. J. Ostrikov, Phys. Rep. 393, 175 (2004).

    Article  ADS  Google Scholar 

  43. S. Yasmin, M. Asaduzzaman, and A. A. Mamun, J. Plasma Phys. 79, 545 (2013).

    Article  ADS  Google Scholar 

  44. A. S. Bains, M. Tribeche, and C. S. Ng, Astrophys. Space Sci. 343, 621628 (2013).

    Google Scholar 

  45. S. K. Zaghbeer, H. H. Salah, N. H. Sheta, E. K. El-Shewy, and A. Elgarayhi, J. Plasma Phys. 80, 517 (2014).

    Article  ADS  Google Scholar 

  46. K. Roy, P. Chatterjee, S. S. Kausik, and C. S. Wong, Astrophys. Space Sci. 350, 599 (2014).

    Article  ADS  Google Scholar 

  47. M. Ferdousi, S. Yasmin, S. Ashraf, and A. A. Mamun, Astrophys. Space Sci. 352, 579 (2014).

    Article  ADS  Google Scholar 

  48. S. A. Ema, M. Ferdousi, and A. A. Mamun, Phys. Plasmas 22, 043702 (2015).

    Article  ADS  Google Scholar 

  49. S. V. Singh and N. N. Rao, J. Plasma Phys. 60, 541(1998).

    Article  ADS  Google Scholar 

  50. Y. Nakamura, H. Bailung, and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).

    Article  ADS  Google Scholar 

  51. S. I. Popel, A. A. Gisko, A. P. Golub, T. V. Losseva, R. Bingham, and P. K. Shukla, Phys. Plasmas 7, 2410 (2000).

    Article  ADS  Google Scholar 

  52. A. A. Mamun and P. K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002).

    Article  ADS  Google Scholar 

  53. A. A. Mamun and R. A. Cairns, Phys. Rev. E 79, 055401 (2009).

    Article  ADS  Google Scholar 

  54. S. K. Kundu, D. K. Ghosh, P. Chatterjee, and B. Das, Bulg. J. Phys. 38, 409 (2011).

    Google Scholar 

  55. M. Shahmansouri and M. Tribeche, Astrophys. Space Sci. 346, 165 (2013).

    Article  ADS  Google Scholar 

  56. S. A. Ema, M. R. Hossen, and A. A. Mamun, Contrib. Plasma Phys. 55, 596 (2015).

    Article  ADS  Google Scholar 

  57. M. G. Shah, M. R. Hossen, and A. A. Mamun, Braz. J. Phys. 45, 219 (2015).

    Article  ADS  Google Scholar 

  58. A. A. Mamun and M. S. Zobaer, Phys. Plasmas 21, 022101 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amina.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amina, M., Ema, S.A. & Mamun, A.A. Small-amplitude shock waves and double layers in dusty plasmas with opposite polarity charged dust grains. Plasma Phys. Rep. 43, 668–676 (2017). https://doi.org/10.1134/S1063780X17060022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17060022

Navigation