Skip to main content
Log in

A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

  • Laser Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O2: He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, N. Richardson, K. Kittell, M. J. Kushner, and W. C. Solomon, Appl. Phys. Lett. 85, 1320 (2004).

    Article  ADS  Google Scholar 

  2. D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, Appl. Phys. Lett. 86, 111104 (2005).

    Article  ADS  Google Scholar 

  3. G. F. Benavides, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. H. Field, A. D. Palla, and W. C. Solomon, Appl. Phys. Lett. 92, 041116 (2008).

    Article  ADS  Google Scholar 

  4. D. L. Carroll, J. T. Verdeyen, G. F. Benavides, A. D. Palla, T. H. Field, J. W. Zimmerman, B. S. Woodard, and W. C. Solomon, in Proceedings of the 39th Plasmadynamics and Lasers Conference, Seattle, WA, 2008, AIAA Paper 2008-4008.

    Google Scholar 

  5. J. W. Zimmerman, B. S. Woodard, G. F. Benavides, D.L. Carroll, J. T. Verdeyen, A. D. Palla, and W. C. Solomon, Appl. Phys. Lett. 92, 241115 (2008).

    Article  ADS  Google Scholar 

  6. J. W. Zimmerman, B. S. Woodard, J. T. Verdeyen, D. L. Carroll, T. H. Field, G. F. Benavides, and W. C. Solomon, J. Phys. D 41, 195209 (2008).

    Article  ADS  Google Scholar 

  7. O. V. Braginsky, A. S. Kovalev, D. V. Lopaev, Yu. A. Mankelevich, O. V. Proshina, T. V. Rakhimova, A. T. Rakhimov, and A. N. Vasilieva, J. Phys. D 39, 5183 (2006).

    Article  ADS  Google Scholar 

  8. O. V. Braginsky, A. S. Kovalev, D. V. Lopaev, O. V. Proshina, T. V. Rakhimova, A. T. Rakhimov, and A. N. Vasilieva, J. Phys. D 40, 6571 (2007).

    Article  ADS  Google Scholar 

  9. O. V. Braginsky, A. S. Kovalev, D. V. Lopaev, O. V. Proshina, T. V. Rakhimova, A. T. Rakhimov, and A. N. Vasilieva, J. Phys. D 41, 172008 (2008).

    Article  ADS  Google Scholar 

  10. D. L. Carroll, G. F. Benavides, J. W. Zimmerman, B.S.Woodard, A. D. Palla, J. T. Verdeyen, and W. C. Solomon, Proc. SPIE 8238, 823803 (2012).

    Article  Google Scholar 

  11. A. A. Ionin, A. P. Napartovich, and Yu. B. Konev, Final Project Technical Report of ISTC Project 2415 (Lebedev Physical Inst., Russ. Acad. Sci., Moscow, 2006). http://www.dtic.mil/dtic/tr/fulltext/u2/a445269.pdf.

    Google Scholar 

  12. A. A. Ionin, M. P. Frolov, V. N. Ochkin, Yu. P. Podmar’kov, S. Yu. Savinov, L. V. Seleznev, D. V. Sinitsyn, N. P. Vagin, N. N. Yuryshev, I. V. Kochetov, A. P. Napartovich, and O. A. Rulev, Proc. SPIE 6101, 61011 (2006).

    Article  Google Scholar 

  13. A. A. Ionin, Yu. M. Klimachev, I. V. Kochetov, A. P. Napartovich, O. A. Rulev, L. V. Seleznev, and D. V. Sinitsyn, Preprint No. 14 (Lebedev Physical Inst., Russ. Acad. Sci., Moscow, 2009).

    Google Scholar 

  14. A. A. Ionin, I. V. Kochetov, A. P. Napartovich, and N. N. Yuryshev, J. Phys. D 40, R25 (2007).

    Article  ADS  Google Scholar 

  15. A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, I. V. Kochetov, A. P. Napartovich, O. A. Rulev, L. V. Seleznev, D. V. Sinitsyn, N. P. Vagin, and N. N. Yuryshev, J. Phys. D 42, 015201 (2009).

    Article  ADS  Google Scholar 

  16. N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, and M. D. Taran, High Temp. 22, 795 (1984).

    Google Scholar 

  17. A. J. Dixon, M. F. A. Harrison, and A. C. H. Smith, J. Phys. B 9, 2617 (1976).

    Article  ADS  Google Scholar 

  18. A. I. Florescu-Mitchell and J. B. A. Mitchell, Phys. Rep. 430, 277 (2006).

    Article  ADS  Google Scholar 

  19. Yu. Z. Ionikh and N. V. Chernysheva, Handbook of Constant of Elementary Processes Involving Atoms, Ions, Electrons, and Photons (Izd. St.-Peterburg. Univ., St. Petersburg, 1994) [in Russian].

    Google Scholar 

  20. N. B. Kolokolov and A. A. Kudryavtsev, in Plazma Chemistry, Ed. by B. M. Smirnov (Energoatomizdat, Moscow, 1989), Vol. 15, p. 127 [in Russian].

  21. L. I. Virin, G. V. Dzhagatsranyan, G. V. Karachevtsev, V. K. Potapov, and V. L. Tal’roze, Ion−Molecule Reactions in Gases (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  22. P. A. Mikheyev, N. I. Ufimtsev, A. V. Demyanov, I. V. Kochetov, V. N. Azyazov, and A. P. Napartovich, Plasma Sources Sci. Technol. 19, 025017 (2010).

    Article  ADS  Google Scholar 

  23. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Book  Google Scholar 

  24. R. S. Brokaw, J. Chem. Phys. 29, 391 (1958).

    Article  ADS  Google Scholar 

  25. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

  26. A. A. Ionin, D. V. Sinitsyn, Yu. V. Terekhov, I. V. Kochetov, A. P. Napartovich, and S. A. Starostin, Plasma Phys. Rep. 31, 786 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ionin.

Additional information

Original Russian Text © N.P. Vagin, A.A. Ionin, I.V. Kochetov, A.P. Napartovich, D.V. Sinitsyn, N.N. Yuryshev, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 3, pp. 267–276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vagin, N.P., Ionin, A.A., Kochetov, I.V. et al. A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge. Plasma Phys. Rep. 43, 330–339 (2017). https://doi.org/10.1134/S1063780X17030151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17030151

Navigation